Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
GAMMA-RAY BURSTS
Kollidierende Neutronensterne im Computer
Redaktion / Pressemitteilung des Max-Planck-Instituts für Gravitationsphysik
astronews.com
11. April 2011

Sie sind faszinierend und geben den Astronomen seit Jahren Rätsel auf: Jene kurzen Blitze im Gammalicht, die binnen Sekundenbruchteilen mehr Energie freisetzen als unsere Galaxie mit ihren 200 Milliarden Sternen in zwölf Monaten. Doch was steckt hinter diesen Ausbrüchen? Mit Hilfe einer aufwendigen Computersimulation kamen Wissenschaftler nun hinter das Geheimnis einiger dieser Blitze.

Simulation

Zwei Neutronensterne verschmelzen innerhalb von Millisekunden zu einem Schwarzen Loch. Dabei bildet sich ein starkes Magnetfeld entlang der Rotationsachse und erzeugt einen Jet, der ultraheiße Materie ins All schleudert. In diesem Jet können Blitze im Gammalicht entstehen.  Bild: NASA/AEI/ZIB/M. Koppitz und L. Rezzolla [Gesamtansicht]

Die erste Beobachtung eines Gammastrahlenausbruchs war Zufall: Ende der 1960er-Jahre entdeckte ein amerikanischer Spionagesatellit auf der Suche nach oberirdischen Atombombenversuchen den ersten Gamma-ray Burst (GBR). Er kam allerdings nicht von der Erde, sondern aus dem Weltall. Von 1991 bis zu seinem Absturz im Juni 2000 registrierte der US-amerikanische Satellit Compton täglich etwa einen GBR - die Ursache dieser gewaltigsten Explosionen im Universum blieb jedoch weitgehend im Dunkeln.

Verschmelzende Neutronensterne galten zwar als heiße Kandidaten, die Wissenschaftler verstanden aber nicht, wie aus dem chaotischen Zustand nach der Verschmelzung dieser etwa 20 Kilometer großen, extrem dicht gepackten Kugeln ein entlang der Rotationsachse orientierter Gasstrom (ein sogenannter Jet) entstehen soll. Der Jet aber ist Voraussetzung für das Auftreten von Gammastrahlenausbrüchen. Wie kann die treibende Kraft hinter dem Prozess diese Ordnung schaffen und solch enorme Energien freisetzen?

Für die kurzen Gammastrahlenblitze mit einer Dauer von bis zu drei Sekunden haben Luciano Rezzolla, Leiter der Gruppe Numerische Relativitätstheorie am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut / AEI) und seine Kollegen in einer internationalen Kooperation nun eine Erklärung gefunden: Das Team hat die Einsteingleichungen und die Gleichungen der Magnetohydrodynamik für zwei zu einem Schwarzen Loch verschmelzende Neutronensterne gelöst und die Simulation auch nach der Verschmelzung weiterlaufen lassen.

Anzeige

Dabei zeigte sich, dass das entstehende schnell rotierende Schwarze Loch zunächst von einem Ring aus heißer Materie mit einem relativ schwachen, chaotischen Magnetfeld umgeben ist. Dieses instabile System induziert durch die Drehbewegung ein extrem starkes, dazu senkrecht stehendes Magnetfeld von 1015 Gauss entlang der Rotationsachse. Zum Vergleich: Dieses Magnetfeld ist 1016 (10.000.000.000.000.000)-mal so stark wie das Magnetfeld der Erde. Damit ist der wichtigste Schritt erklärt: Die Entstehung des Jets, in dem dann die ultrahoch erhitzte Materie in zwei gebündelten Strahlen ins All schießen und dabei kurz im Gammastrahlenbereich aufleuchten kann.

"Zum ersten Mal haben wir den gesamten Prozess vom Verschmelzen der Neutronensterne bis zur Entstehung des Jets beobachtet", erklärt Rezzolla. "Das ist ein Durchbruch, denn bislang war unklar, wie aus dem Chaos die Ordnung entsteht, die für die Ausbildung des Jets und damit für die Gammablitze notwendig ist." Die Forscher ließen dafür die Simulation doppelt so lange laufen wie gewöhnlich. Insgesamt hat der Supercomputer Damiana sechs Wochen lang gerechnet. Die komplette Simulation zeigt, was in nur 35 Millisekunden passiert. "Wir haben eine Brücke zwischen den theoretischen Modellen und den astronomischen Beobachtungen geschlagen, indem wir zeigen konnten, wie eine Jet-förmige Struktur durch Selbstorganisation des Magnetfelds bei der Verschmelzung der Neutronensterne entsteht", ergänzt Chryssa Kouveliotou von der US-amerikanischen Raumfahrtbehörde NASA.

Zusätzlich zu riesigen Mengen von Gammastrahlung entstehen bei diesen Megacrashs im All auch Gravitationswellen, deren Signalform die Wissenschaftler simulieren. Diese winzigen Kräuselungen der Raumzeit sagte Albert Einstein mit seiner Allgemeinen Relativitätstheorie vorher, sie wurden aber noch nicht direkt gemessen. Die simulierten Wellensignale sollen helfen, im Datendschungel der Detektoren echte Gravitationswellen zu entdecken. Denn: Mit einem möglichst genauen Fahndungsfoto steigen die Chancen, die Fingerabdrücke von Gravitationswellen tatsächlich zu identifizieren.

Die Forscher berichten über ihre Ergebnisse in der Fachzeitschrift The Astrophysical Journal Letters.

Forum
Kollidierende Neutronensterne im Computer. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
La Silla: Neues Licht auf dunkle Gamma-ray Bursts - 17. Dezember 2010
Neutronensterne: Wenn Neutronensterne kollidieren - 31. März 2006
Gamma-Ray-Bursts: Rätsel der kurzen Gammastrahlenblitze gelöst - 6. Oktober 2005
Gamma-Ray-Bursts: Gamma-Blitz traf Erde - 21. Februar 2005
Integral: Eine neue Klasse von Gammastrahlenblitzen? - 9. August 2004
Gamma-Ray-Bursts: Neue Beweise für Hypernova-These - 13. November 2003
Gamma-Ray-Bursts: Die Geburt eines Schwarzen Lochs? - 20. März 2003
Gamma-Ray-Bursts: Rätsel um Ursache gelöst? - 17. Mai 2002
Gamma-Ray-Bursts: Sternexplosion als Ursache - 4. April 2002
Gamma-Ray-Bursts: Drei Sonden finden den nächstgelegenen Ausbruch - 19. Dezember 2001
Gamma-Ray-Bursts: Zwei Typen, zwei Ursachen - 15. November 2000
Gamma-Ray-Bursts: Eine Supernova als Auslöser - 3. November 2000
Gamma-Ray-Bursts: Ursprung im Sternentstehungsgebiet
- 29. Juni 2000
Gamma-Ray-Bursts: Perfekte Heirat
- 30. September 1999
Gamma-Ray-Bursts: Weltweite Jagd nach GRB990510
- 21. Mai 1999
Gamma-Ray-Bursts: Spektakuläre Explosionen - 13. April 1999
Gamma-Ray-Bursts: Verlöschender Feuerball - 15. März 1999
Gamma-Ray-Bursts: Unerwartetes Mordsding - 1. Februar 1999
Links im WWW
Max-Planck-Institut für Gravitationsphysik
Preprint des Fachartikels bei arXiv.org
In sozialen Netzwerken empfehlen
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2011/04/1104-013.shtml