Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
ATOMUHREN
Laser-Kernanregung macht noch genauere Atomuhren möglich
Redaktion / idw / Pressemitteilung der Physikalisch-Technische Bundesanstalt (PTB)
astronews.com
30. April 2024

Atomkern-Uhren könnten die Zeitmessung noch einmal deutlich präziser machen, tiefe Einblicke in die Quantenwelt erlauben und neue Erkenntnisse zum Ursprung des Universums und der Existenz Dunkler Materie bringen. Nun ist einem Team aus Braunschweig und Wien ein lange erhoffter Durchbruch gelungen, durch den solche Uhren in greifbare Nähe rücken.

Versuchsaufbau

PTB-Wissenschaftler Johannes Tiedau mit dem Laseraufbau und Vakuumsystem für die Untersuchung des Thorium-229 Kerns. Bild: PTB [Großansicht]

Forschenden ist ein herausragender Quantensprung gelungen – sprichwörtlich und ganz real: Nach jahrzehntelanger Suche konnten sie genau die Laserfrequenz finden und anwenden, die den Atomkern des Elements Thorium-229 zu einem Quantensprung von einem Energieniveau auf ein eng daneben liegendes anregt. Derartige Laser-Kernanregungen öffnen die Tür für neuartige Atomkern-Uhren, die noch einmal deutlich genauer sein könnten als heutige Atomuhren. "Das ist nach etlichen Jahren Forschung ein großartiger Durchbruch, der bisher nie gekannte Präzisionsmessungen möglich machen könnte", freut sich Dr. Ekkehard Peik von der Physikalisch-Technischen Bundesanstalt (PTB). "Dies könnte für tiefe Einblicke in die Quantenwelt sorgen und neue Erkenntnisse zum Ursprung des Universums und der Existenz Dunkler Materie bringen." Möglich wurde dies in einer Kooperation der PTB mit der TU Wien.

Im Gegensatz zu Atomkernen ist die Anregung von Elektronen in der Atomhülle schon lange eine verbreitete Methode: Wenn die Wellenlänge eines Lasers exakt gewählt ist, wechselt ein Elektron von einem Zustand in einen anderen. So kann man diese für ein Atom oder Molekül charakteristische Energie sehr exakt vermessen. Viele Präzisionsmesstechniken beruhen genau darauf, etwa unsere heutigen Atomuhren, aber auch chemische Analysemethoden. Auch in Quantencomputern werden Laser verwendet, um Information in Atomen oder Molekülen zu speichern.

Anzeige

Lange schien es unmöglich, diese Techniken auf Atomkerne anzuwenden, die ebenfalls unterschiedliche Quantenzustände annehmen können. Doch dafür wäre mindestens das Tausendfache der Energie im Vergleich zur Elektronenanregung nötig. Eigentlich wären Atomkerne die perfekten Quantenobjekte für Präzisionsmessungen: Sie sind von der Elektronenhülle umgeben und somit geschützt und viel weniger anfällig für Störungen von außen. Prinzipiell würden sie daher Messungen mit bisher unerreichter Genauigkeit erlauben.

Schon seit den 1970er-Jahren wurde spekuliert, dass sich der Atomkern des Elements Thorium-229 mit einem Laser gezielt anregen lassen könnte. Er weist zwei sehr eng benachbarte Energiezustände auf, sodass ein Laser ausreichen sollte, um den Zustand des Atomkerns zu verändern. Lange Zeit gab es aber nur indirekte Hinweise auf die Existenz dieses Übergangs. Denn um ihn gezielt anzuregen, muss die nur ungenau bekannte Energie des Übergangs mit einem Laser auf ein Millionstel Elektronenvolt genau getroffen werden.

Um dieses Problem zu lösen, haben die PTB und die TU Wien, gefördert vom Europäischen Research Council, im Jahr 2020 ein Kooperationsprojekt gestartet: An der PTB wurde ein Lasersystem bei der benötigten ultravioletten Wellenlänge von etwa 148 nm entwickelt, während an der TU Wien Kristalle hergestellt wurden, in denen die Thorium-Kerne in großer Anzahl gezielt eingebaut wurden. Beide Aufgaben waren nicht nur Neuland, sondern auch technisch sehr aufwendig. Sie haben aber schließlich die Möglichkeit geschaffen, dass schließlich in der PTB rund zehn Billiarden (1016) Thorium-Kerne gleichzeitig mit dem Laser getroffen werden können. So kann die Kernantwort auf die Laseranregung verstärkt werden, die nötige Messdauer verkürzt und die Wahrscheinlichkeit, den gesuchten Energie-Übergang zu finden, erhöht werden.

Den Forschenden ist es mit diesem Vorgehen gelungen, die Energie des gesuchten Thorium-Übergangs exakt zu treffen, und die Thorium-Kerne lieferten zum ersten Mal ein klares Signal: Der Laserstrahl hatte ihren Zustand gezielt umgeschaltet. Die erfolgreiche Laser-Kernanregung öffnet nun die Tür für eine Atomkern-Uhr, die noch einmal deutlich genauer sein könnte als die heutigen Atomuhren. Sie könnte die grundlegenden Fragen der Quantenforschung nach dem Ursprung unserer Welt – z. B. ob Naturkonstanten seit dem Urknall konstant sind – beantworten helfen. Und wenn die nun realisierten Thorium-dotierten Kristalle weiterentwickelt werden, könnten Thorium-Kerne gezielt als Sonden in Kristalle oder Moleküle eingebaut werden und dort neue Informationen über mikroskopische Materialeigenschaften zugänglich machen.

Der Fachartikel über die Arbeit erschien nun in der Zeitschrift Physical Review Letters.

Forum
Laser-Kernanregung macht noch genauere Atomuhren möglich. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Kernuhren: Auf dem Weg zur nuklearen Zeitmessung - 18. März 2024
Kernuhren: Wichtiger Schritt zu noch genaueren Uhren - 23. August 2023
Zeitmessung: Atomuhren sollen noch genauer werden - 16. März 2023
Links im WWW
Tiedau, J. et al. (2024): Laser excitation of the Th-229 nucleus, Phys. Rev. Lett., 132, 182501
Physikalisch-Technische Bundesanstalt (PTB)
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2024/04