Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
TEILCHENPHYSIK
Neutrinos und ihre Antiteilchen
Redaktion / idw / Pressemitteilung der Technischen Universität München
astronews.com
11. September 2019

Sind Neutrinos ihre eigenen Antiteilchen und kann Materie also auch ohne Antimaterie erzeugt werden? Diese spannenden Fragen wollen Teilchenphysiker im Rahmen des GERDA-Experiments im Gran-Sasso-Untergrundlabor klären. Sie suchen dazu nach dem neutrinolosen doppelten Betazerfall. Inzwischen arbeiten sie an dem Folgeprojekt LEGEND, das eine noch höhere Genauigkeit erreichen soll.

Gran Sasso

Arbeiten an den Germanium-Detektoren im Reinraum des unterirdischen Labors von Gran Sasso. Foto: J. Suvorov / GERDA  [Großansicht]

Das Standardmodell der Teilchenphysik ist seit seinen Anfängen nahezu unverändert gültig. Widersprüche zwischen Theorie und Experiment haben sich bislang nur bei Neutrinos gezeigt. Die Neutrino-Oszillation war dabei die erste Beobachtung, die nicht mit den Vorhersagen übereinstimmte. Sie beweist, dass Neutrinos im Widerspruch zum Standardmodell eine Masse ungleich Null haben. 2015 wurde diese Entdeckung mit dem Nobelpreis ausgezeichnet.

Hinzu kommt die Vermutung, dass Neutrinos sogenannte Majorana-Teilchen sind: Anders als alle anderen Bausteine der Materie könnten sie ihre eigenen Antiteilchen sein. Dies würde auch eine Erklärung dafür liefern, warum es im Universum so viel mehr Materie als Antimaterie gibt. Zur Überprüfung der Majorana-Vermutung sucht die GERDA-Kollaboration nach dem bisher nicht beobachteten neutrinolosen doppelten Betazerfall im Germanium-Isotop 76-Ge: Dabei wandeln sich zwei Neutronen in einem 76-Ge-Kern gleichzeitig in zwei Protonen um, wobei zwei Elektronen emittiert werden. Dieser Zerfall ist im Standardmodell verboten, da die beiden Antineutrinos – die ausgleichende Antimaterie – fehlen.

Die Technische Universität München (TUM) beteiligt sich seit vielen Jahren intensiv am Projekt GERDA (GERmanium Detector Array). Sprecher des neuen Projekts LEGEND ist Prof. Stefan Schönert, der die TUM-Forschungsgruppe leitet. GERDA ist das erste Experiment auf dem Gebiet, das den störenden Untergrund soweit reduzieren konnte, dass der gesuchte neutrinolose doppelte Betazerfall, sofern er existiert, eine Halbwertszeit von mindestens 1026 Jahren haben muss, das ist das 10.000.000.000.000.000-fache des Alters des Universums.

Anzeige

Die Physiker wissen, dass Neutrinos mindestens hunderttausend Mal mal leichter sind als Elektronen, die nächstschwereren Teilchen. Welche Masse sie genau haben, ist allerdings noch unbekannt und ein weiteres wichtiges Forschungsthema. Interessanterweise korrespondiert die Halbwertszeit des neutrinolosen doppelten Betazerfalls mit einer speziellen Variante der Neutrino-Masse, der Majorana-Masse.

Kombiniert man das neue GERDA-Ergebnis mit denjenigen anderer Doppel-Beta-Zerfallsexperimente, so muss diese Masse sogar mindestens eine Million mal kleiner sein als die des Elektrons. Physikalisch ausgedrückt läge die Masse bei unter 0,07 bis 0,16 eV/c2. Massen werden in der Teilchenphysik statt in Kilogramm entsprechend der Einsteinschen Gleichung E=mc2 in Elektronenvolt [eV] (als Einheit für die Energie)/Lichtgeschwindigkeit zum Quadrat angegeben, da der Zahlenwert sonst unvorstellbar klein würde: 1 eV/c2 entspricht 1,8 x 10-37 Kilogramm.

Auch andere Experimente grenzen die Neutrino-Massen ein: Die jüngste Analyse der Planck-Mission kommt für die Summe der Massen der drei Neutrino-Arten auf unter 0,12 – 0,66 eV/c2. Das Tritium-Zerfallsexperiment KATRIN am Karlsruher Institut für Technologie (KIT) wird in den kommenden Jahren die Masse des Elektron-Neutrinos mit einer Empfindlichkeit von ca. 0,2 eV/c2 bestimmen. Die Werte können zwar nicht direkt verglichen werden, sie erlauben es aber, die unterschiedlichen Modelle zu überprüfen. Bislang gibt es keine Widersprüche.

Die nun vorgestellten Beobachtungen wurden mit einer Detektormasse von 35,6 Kilogramm 76-Ge gemacht. Eine neue internationale Zusammenarbeit unter dem Namen LEGEND wird nun die Detektormasse bis 2021 auf 200 Kilogramm 76-Ge erhöhen und die Störungen so weit reduzieren, dass nach fünf Jahren eine Empfindlichkeit von 1027 Jahren erreicht ist.

GERDA ist eine internationale europäische Kooperation von mehr als 100 Physikern aus Belgien, Deutschland, Italien, Russland, Polen und der Schweiz. In Deutschland sind die Technischen Universitäten München und Dresden, die Universität Tübingen und die Max-Planck Institute für Physik und für Kernphysik beteiligt.

Über ihr Vorhaben berichten die Forscher in einem Fachartikel, der in der Zeitschrift Science erschienen ist.

Forum
Neutrinos und ihre Antiteilchen. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
GERDA: Suche nach seltenem Betazerfall - 6. April 2017
Neutrinos: Bislang kein Hinweis auf Majorana-Eigenschaft - 17. Juli 2013
Elementarteilchenphysik: Der Natur des Neutrinos auf der Spur - 20. Februar 2012
Elementarteilchenphysik: Das Antiteilchen des Neutrinos - 8. Februar 2011
Links im WWW
Technische Universität München
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2019. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2019
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2019/09