Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
ELEMENTARTEILCHENPHYSIK
Der Natur des Neutrinos auf der Spur
Redaktion / idw / Pressemitteilung des Max-Planck-Instituts für Kernphysik
astronews.com
20. Februar 2012

Ist das Neutrino sein eigenes Antiteilchen? Diese faszinierende Eigenschaft ließe sich durch den Nachweis einer bestimmten Variante des Betazerfalls beweisen. Neue präzise Messungen der Zerfallsenergie von Palladium-110 lassen dieses Isotop nun als vielversprechenden Kandidaten für entsprechende Experimente erscheinen.

Doppelbetazerfall

Illustration des Doppelbetazerfalls, bei dem zwei Neutronen in einem Atomkern in je ein Proton zerfallen. Links der gewöhnliche Doppelbetazerfall unter Aussendung zweier Neutrinos (hellgrau), rechts der neutrinolosen Doppelbetazerfall: Das Neutrino aus einem der beiden Neutronen wird als Antineutrino wieder eingefangen und verschmilzt unter Aussendung des zweiten Elektrons mit dem anderen Neutron zu einem weiteren Proton. Bild: MPIK

In der Neutrinophysik spielt der Betazerfall eine wichtige Rolle. Schon 26 Jahre vor der ersten Beobachtung eines Neutrinos schlug Wolfgang Pauli 1930 in einem Brief dessen Existenz vor, insbesondere deswegen, weil die Energie der beim Betazerfall freigesetzten Elektronen ein kontinuierliches Spektrum zeigt und somit bei Gültigkeit des Energiesatzes ein weiteres Teilchen die Überschussenergie aufnehmen müsste. Beim Betazerfall eines Atomkerns wandelt sich ein Neutron unter Aussendung eines Elektrons und eines Antineutrinos in ein Proton um. Dabei bleibt die Zahl der Leptonen, zu denen Elektronen und Neutrinos zählen, erhalten, da Antiteilchen negativ gezählt werden.

Neutrinos haben eine Reihe bemerkenswerter Eigenschaften: Sie sind elektrisch neutral und wechselwirken mit der übrigen Materie nur sehr schwach, so dass sie diese nahezu ungehindert durchdringen. Unbekannt sind aber noch die Absolutwerte der Neutrinomassen und die Frage, ob Neutrinos sogenannte Majoranateilchen und damit ihre eigenen Antiteilchen sind. Letzteres hat grundsätzliche Konsequenzen für die Teilchenphysik und Kosmologie und daher unternehmen Forscher große Anstrengungen, dies experimentell zu testen.

Ein möglicher Nachweis der Majorana-Eigenschaft wäre die Beobachtung des neutrinolosen doppelten Betazerfalls. Normalerweise entstehen dabei aus zwei Neutronen zwei Protonen sowie zwei Elektronen und zwei Antineutrinos, die den Kern verlassen. Ist aber das Neutrino mit seinem Antiteilchen identisch, so kann es nach der Entstehung beim Zerfall des einen Neutrons vom anderen Neutron gleich wieder verschluckt werden, so dass nur die beiden Elektronen ausgesendet werden und praktisch die volle Zerfallsenergie mit sich tragen. Ein solcher neutrinoloser Prozess ist sehr unwahrscheinlich. Die Forscher rechnen mit Halbwertszeiten, die das Alter des Universums um viele Größenordnungen übersteigen.

Anzeige

Um ihn also überhaupt zu beobachten, bedarf es eines geeigneten Radionuklids in ausreichender Menge und eines großen experimentellen Aufwandes, um genau diesen Zerfall aus der Fülle von Hintergrundereignissen zu isolieren. Ein Beispiel für einen solchen Versuch ist das GERDA-Experiment im italienischen Gran-Sasso-Untergrundlabor. Untersucht wird dort das Germanium-Isotop mit der Massenzahl 76. Neben Germanium-76 gibt es aber noch einige wenige weitere Nuklide, die als Kandidaten für die Suche nach dem neutrinolosen Doppelbetazerfall in Frage kommen könnten: darunter Palladium-110.

Eine Eingangsgröße in die Berechnung der Halbwertszeit ist die beim Zerfall freigesetzte Energie. Nach Einsteins Formel E=mc2 ist diese Energie äquivalent zur Massendifferenz von Mutter- und Tochternuklid des Zerfalls (zuzüglich der doppelten Elektronenmasse). Die ISOLTRAP-Kollaboration hat nun mit ihrem Penningfallen-Massenspektrometer am CERN die Massendifferenz von Palladium-110 und seinem Tochternuklid Cadmium-110 mit bisher nicht erreichter Genauigkeit ermittelt.

Hierzu wurde die kreisende Bewegung einfach geladener Palladium- und Cadmium-Ionen im Magnetfeld einer speziellen Ionenfalle vermessen und aus der daraus gewonnenen Massendifferenz die gesuchte Zerfallsenergie zu 2017,85 keV (+/- 0,64 keV) bestimmt. Das neue Ergebnis liegt 14 keV über dem bisherigen Wert; zugleich konnte die Unsicherheit gegenüber dem besten früheren Wert um fast das 20-fache verringert werden. Der Zerfall wird neben der freigesetzten Energie entscheidend durch die Kernstrukturen von Ausgangs- und Tochterkern bestimmt, die sich berechnen lassen.

Aus diesen Eingangsdaten ergibt sich die Halbwertszeit für den gewöhnlichen Doppelbetazerfall von Palladium-110 zu 1,5x1020 Jahren. Anschaulich bedeutet diese astronomisch hohe Zahl, dass in einem Kilogramm Palladium-110 pro Tag etwa 70 gewöhnliche Doppelbetazerfälle auftreten. Die Halbwertszeit für den neutrinolosen Doppelbetazerfall hängt zusätzlich von der Neutrinomasse ab, für die bislang nur eine obere Grenze bekannt ist. Mit den derzeit diskutierten Werten für die Neutrinomasse ergeben sich 5x1024 bis 1x1025 Jahre - das wären bei 100 Kilogramm Palladium-110 rund 40 bis 80 neutrinolose Doppelbetazerfälle pro Jahr.

Trotz dieser kleinen Zahl rückt damit Palladium-110 aufgrund seines recht hohen Vorkommens (gemessen an der Weltjahresproduktion das Dreifache von Germanium-76) in den engeren Kreis vielversprechender Kandidaten für Studien zum doppelten Betazerfall und der Suche nach der Neutrinomasse, zumal aufgrund der hohen Genauigkeit der neuen Massenbestimmung der Suchbereich der elektronischen Energien für diese Ereignisse stark eingeschränkt werden konnte.

Für einen möglichen zukünftigen Detektor mit Palladium-110 müssen freilich weitere Voraussetzungen erfüllt sein, die nicht Gegenstand der aktuellen Untersuchungen waren. Hierzu sind vor allem noch Fragen der radiochemischen Reinigung, Detektionsverfahren und Kontrolle von Hintergrundereignissen zu klären, die wie bei anderen Neutrino-Experimenten eine erheblich technische Herausforderung darstellen.

An den Messungen waren Forscher des Max-Planck-Instituts für Kernphysik in Heidelberg, der Universitäten von Dresden und Greifswald sowie des Helmholtzzentrums für Schwerionenforschung in Darmstadt beteiligt. Die Wissenschaftler berichteten über ihre Ergebnisse in der Fachzeitschrift Physical Review Letters.

Forum
Der Natur des Neutrinos auf der Spur. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Elementarteilchenphysik: Das Antiteilchen des Neutrinos - 8. Februar 2011
Links im WWW
Preprint des Fachartikels bei arXiv.org
Max-Planck-Institut für Kernphysik
In sozialen Netzwerken empfehlen
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2012/02