Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Teleskope : Artikel [ Druckansicht ]

 
JAMES WEBB
Detaillierter Blick auf protoplanetare Scheiben
Redaktion / Pressemitteilung des Max-Planck-Instituts für Astronomie
astronews.com
8. Oktober 2024

Mithilfe des Weltraumteleskops James Webb gelang nun ein detaillierter Blick auf Scheiben aus Gas und Staub um junge Sterne, in denen neue Planeten entstehen. Die hier beobachtete verschachtelte Struktur der Gasströme bestätigt einen seit Langem theoretisch angenommenen Mechanismus, der es dem Stern ermöglicht, durch das Abzapfen von Scheibenmaterial zu wachsen.

Scheibe

Diese künstlerische Darstellung einer planetenbildenden Scheibe, die einen jungen Stern umgibt, zeigt einen wirbelnden "Pfannkuchen" aus heißem Gas und Staub, aus dem Planeten entstehen. Mit dem James-Webb-Weltraumteleskop erhielt das Team detaillierte Bilder, die die verschachtelte, konische Struktur von Scheibenwinden zeigen – Gasströme, die in den Weltraum entweichen. Bild: National Astronomical Observatory of Japan (NAOJ) [Großansicht]

Jede Sekunde werden im sichtbaren Universum mehr als 3000 Sterne geboren. Viele sind von etwas umgeben, das die Astronomie als protoplanetare Scheibe bezeichnet – eine wirbelnde "Scheibe" aus heißem Gas und Staub, die das Wachstum des Zentralsterns fördert und die Bausteine für neue Planeten liefert. Die genauen Prozesse, die zur Entstehung von Sternen und Planetensystemen führen, sind jedoch noch immer kaum verstanden.

Ein Team von Astronominnen und Astronomen unter der Leitung der University of Arizona, unterstützt von Wissenschaftlern des Max-Planck-Instituts für Astronomie (MPIA) in Heidelberg, nutzte das James Webb Space Telescope (JWST), um einige der detailliertesten Einblicke in die Kräfte zu erhalten, die protoplanetare Scheiben formen. Die Beobachtungen geben Aufschluss darüber, wie unser Sonnensystem vor 4,6 Milliarden Jahren ausgesehen haben könnte.

Insbesondere konnte das Team sogenannte Scheibenwinde in noch nie dagewesenem Detailreichtum nachzeichnen. Diese Winde sind Gasströme, die von der planetenbildenden Scheibe in den Weltraum hinausblasen. Sie werden hauptsächlich durch Magnetfelder angetrieben und können sich in nur einer Sekunde über Dutzende Kilometer ausbreiten. Die jetzt veröffentlichten Ergebnisse des Forschungsteams helfen besser zu verstehen, wie junge Planetensysteme entstehen und sich entwickeln. Laut Ilaria Pascucci, Professorin am Lunar and Planetary Laboratory der University of Arizona, ist einer der wichtigsten Prozesse, die in einer protoplanetaren Scheibe ablaufen, das Verschlingen von Materie durch den Stern aus seiner umgebenden Scheibe. Dies wird in der Astronomie als Akkretion bezeichnet.

"Wie ein Stern Masse ansammelt, hat einen großen Einfluss darauf, wie sich die umgebende Scheibe im Laufe der Zeit entwickelt, einschließlich der Art und Weise, wie sich später Planeten bilden", so Pascucci. "Die genauen Mechanismen, die dabei zum Tragen kommen, sind bislang nicht verstanden, aber wir glauben, dass Winde, die von Magnetfeldern über den größten Teil der Scheibenoberfläche angetrieben werden, eine essenzielle Rolle spielen könnten."

Anzeige

Junge Sterne wachsen, indem sie Gas aus der umgebenden Scheibe anziehen, aber damit dies geschehen kann, muss das Gas zunächst einen Teil seiner Widerstandsfähigkeit gegen Geschwindigkeitsänderungen verlieren. Andernfalls würde das Gas den Stern ständig umkreisen und niemals auf ihn herunterfallen. In der Astrophysik wird dieser Prozess als "Verlust des Drehimpulses" bezeichnet, aber wie genau dies geschieht, ist schwer zu bestimmen. In den letzten Jahren haben sich magnetisch angetriebene Scheibenwinde als wesentliche Akteure herausgestellt, die Gas von der Scheibenoberfläche wegleiten – und damit auch den Drehimpuls – und es dem übrig gebliebenen Gas ermöglichen, langsamer zu werden, sich nach innen zu bewegen und schließlich auf den Stern zu fallen.

Da auch andere Prozesse die protoplanetaren Scheiben formen, ist es laut Tracy Beck vom Space Telescope Science Institute von entscheidender Bedeutung, zwischen den verschiedenen Phänomenen unterscheiden zu können. Während das Magnetfeld des Sterns Material am inneren Rand der Scheibe in einem als X-Wind bezeichneten Phänomen nach außen drückt, werden die äußeren Teile der Scheibe durch intensives Sternlicht abgetragen, was zu sogenannten thermischen Winden führt, die mit viel geringeren Geschwindigkeiten wehen.

Die hohe Empfindlichkeit und Auflösung des JWST waren ideal geeignet, um zwischen dem magnetfeldgetriebenen Wind, dem thermischen Wind und dem X-Wind zu unterscheiden. Ein entscheidendes Merkmal, das die magnetisch angetriebenen von den X-Winden unterscheidet, ist, dass sie sich weiter außen befinden und sich über größere Regionen erstrecken, einschließlich der Zone mit den inneren Gesteinsplaneten unseres Sonnensystems – etwa zwischen Erde und Mars. Diese Winde erstrecken sich auch weiter oberhalb der Scheibe als thermische Winde und erreichen die hundertfache Entfernung zwischen Erde und Sonne.

"Wir hatten bereits anhand interferometrischer Beobachtungen im Radiowellenlängenbereich Hinweise auf einen solchen Wind gefunden", betont der MPIA-Astronom Dmitry Semenov. Diese Beobachtungen konnten jedoch nicht die gesamte Struktur des Scheibenwinds untersuchen, geschweige denn detailliert abbilden. Insbesondere die verschachtelte Struktur der verschiedenen Windkomponenten, ein Kennzeichen dieser Scheibenwinde, lag außerhalb der Möglichkeiten der Beobachtungen. Im Gegensatz dazu haben die neuen JWST-Beobachtungen diese Struktur zweifelsfrei aufgedeckt. Die beobachtete Morphologie entspricht den Erwartungen an einen magnetisch angetriebenen Scheibenwind. "Unsere Beobachtungen deuten stark darauf hin, dass wir die ersten detaillierten Bilder der Winde erhalten haben, die den Drehimpuls abführen und das seit Langem bestehende Problem der Entstehung von Sternen und Planetensystemen lösen können", sagt Pascucci.

Für ihre Studie wählten die Forscher vier protoplanetare Scheibensysteme aus, die von der Erde aus alle von der Seite betrachtet werden. Durch ihre Ausrichtung konnten Staub und Gas in der Scheibe als Blende fungieren und einen Teil des Lichts des hellen Zentralsterns abschwächen, das sonst die Winde überstrahlt hätte. Das Team konnte die verschiedenen Windschichten nachverfolgen, indem es den NIRSpec-Detektor von JWST auf unterschiedliche Atome und Moleküle in bestimmten Übergangszuständen abstimmte. NIRSpec ist der hochauflösende Nahinfrarot-Spektrograf des JWST. Die Astronomen erhielten räumlich aufgelöste Spektralinformationen über das gesamte Sichtfeld, indem sie die Integral Field Unit (IFU) des Spektrografen verwendeten, die im Wesentlichen ein Raster ist, das bestimmte Positionen am Himmel betrachtet. Auf diese Weise generierten die Forschenden Bilder bei verschiedenen charakteristischen Wellenlängen, die jeweils vergleichsweise grob, aber dennoch gut genug waren, um die Form zu erkennen.

Die Beobachtungen offenbarten eine komplexe, dreidimensionale Struktur eines zentralen Jets, der in einer kegelförmigen Hülle aus Winden eingebettet ist, die aus immer größeren Abständen in der Scheibe stammen, ähnlich einer Zwiebelschalenstruktur. Laut den Forschenden war eine wichtige neue Erkenntnis der sich wiederholende Befund eines ausgeprägten zentralen Lochs in den Kegeln, das durch molekulare Winde in jeder der vier Scheiben gebildet wird. Als Nächstes möchte das Team um Pascucci diese Beobachtungen auf weitere protoplanetare Scheiben ausweiten, um besser zu verstehen, wie häufig die beobachteten Scheibenwindstrukturen im Universum vorkommen und wie sie sich entwickeln. "Wir glauben, dass sie weitverbreitet sein könnten, aber bei vier Objekten ist das schwer zu sagen", erläutert Pascucci. "Wir wollen mit dem JWST eine größere Stichprobe erhalten und dann auch sehen, ob wir Veränderungen in diesen Winden feststellen können, wenn sich Sterne bilden und Planeten entstehen."

Über die Beobachtungen berichtet das Team in einem Fachartikel, der in der Zeitschrift Nature Astronomy erschienen ist.

Forum
Detaillierter Blick auf protoplanetare Scheiben. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
James Webb: Protoplanetare Scheiben um massearme Sterne sind anders - 10. Juni 2024
ALMA: Detaillierter Blick in planetare Kinderstube - 17. September 2021
ALMA: Einblicke in die Frühphase von Planetensystemen - 1. Dezember 2020
GRAVITY: Wachstum eines Sterns im Detail - 27. August 2020
Links im WWW
Pascucci, I. et al. (2024): The nested morphology of disk winds from young stars revealed by JWST/NIRSpec observations, Nature Astronomy (Preprint-Download vom MPIA, pdf)
Max-Planck-Institut für Astronomie
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2024/10