Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Teleskope : Artikel [ Druckansicht ]

 
RADIOASTRONOMIE
Magnetare und die rätselhaften Radioblitze
Redaktion / Pressemitteilung des Max-Planck-Instituts für Radioastronomie
astronews.com
27. November 2023

Mithilfe von Radiobeobachtungen ist ein internationales Forschungsteam auf eine besondere Eigenschaft von sogenannten Magnetaren gestoßen, die diese mit anderen Neutronensternen zu teilen scheinen. Die Entdeckung liefert einen Hinweise auf die Entstehung von Radiostrahlung bei diesen Objekten und könnte auch etwas über den Ursprung der rätselhaften schnellen Radiostrahlungsausbrüche verraten.

Magnetar

Künstlerische Darstellung eines Magnetars: ein Neutronenstern sendet mithilfe der im ultrastarken Magnetfeld gespeicherten Energie Radiostrahlung aus und verursacht so Ausbrüche, die zu den energiereichsten im Universum beobachteten Ereignissen zählen.  Bild: Michael Kramer / MPIfR [Großansicht]

Neutronensterne sind die kollabierten Kerne massereicher Sterne, bei denen bis zu zwei Sonnenmassen in einer Kugel von weniger als 25 Kilometer Durchmesser konzentriert sind. Infolgedessen ist die Materie dort die am dichtesten gepackte im beobachtbaren Universum, wobei Elektronen und Protonen zu Neutronen komprimiert werden; daher der Name für diese Objekte. Mehr als 3000 Neutronensterne können als Radiopulsare beobachtet werden, die einen gebündelten Radiostrahl aussenden, der von der Erde aus als pulsierendes Signal sichtbar ist, wenn der rotierende Pulsar sein Licht in Richtung unserer Teleskope abstrahlt. Das Magnetfeld von normalen Pulsaren ist bereits Billionen Mal stärker als das Magnetfeld der Erde, aber es gibt eine kleine Gruppe von Neutronensternen, deren Magnetfeld sogar noch 1000 Mal stärker ist. Dies sind die sogenannten Magnetare.

Von den etwa 30 bekannten Magnetaren wurden sechs auch als Radiostrahler entdeckt, zumindest zeitweise. Um diesen Zusammenhang zu untersuchen, haben Forschende des Max-Planck-Instituts für Radioastronomie (MPIfR) mit Unterstützung von Kollegen der Universität Manchester die einzelnen Pulse von Magnetaren im Detail untersucht und eine Unterstruktur in ihnen entdeckt. Es stellte sich heraus, dass eine ähnliche Pulsstruktur auch in Pulsaren, in schnell rotierenden Millisekunden-Pulsaren, und in weiteren Neutronensternquellen, den sogenannten "Rotating Radio Transients", beobachtet wurde. Zu ihrer Überraschung stellte das Team fest, dass die Zeitskalen von Magnetaren und die der anderen Arten von Neutronensternen alle der gleichen universellen Beziehung folgen und genau mit der Rotationsperiode skalieren.

Anzeige

In letzter Zeit hat das Forschungsinteresse an Magnetaren und ihren Eigenschaften drastisch zugenommen, da sie möglicherweise mit schnellen Radiostrahlungsausbrüchen (FRBs) in Verbindung stehen. FRBs sind kurzzeitige Ausbrüche von Radioemissionen von nur wenigen Millisekunden Dauer, die von außergalaktischen Quellen erzeugt werden. Obwohl der Ursprung der FRBs noch nicht geklärt ist, wird spekuliert, dass Magnetare eine der möglichen FRB-Quellen darstellen.

Die Tatsache, dass sich ein Neutronenstern mit einer Rotationsperiode von weniger als ein paar Millisekunden und ein Neutronenstern mit einer Periode von fast 100 Sekunden wie ein Magnetar verhalten, deutet darauf hin, dass der eigentliche Ursprung der Subpulsstruktur bei allen Neutronensternen, die Radiostrahlung aussenden, derselbe sein muss. Das gibt Informationen über den Plasmaprozess, der für die Radioemission verantwortlich ist, und bietet eine Möglichkeit, ähnliche Strukturen, die in FRBs zu sehen sind, als Ergebnis einer entsprechenden Rotationsperiode zu interpretieren. "Als wir damit anfingen, die Emission von Magnetaren mit der von FRBs zu vergleichen, erwarteten wir durchaus Ähnlichkeiten", erinnert sich Michael Kramer, Direktor am MPIfR. "Was wir nicht erwartet haben, ist, dass alle radiostrahlenden Neutronensterne diese universelle Skalierung teilen."

"Wir gehen davon aus, dass Magnetare durch Magnetfeldenergie angetrieben werden, während die anderen durch ihre Rotationsenergie angetrieben werden", ergänzt Kuo Liu. "Einige sind sehr alt, andere sehr jung, und doch scheinen alle diesem Gesetz zu folgen." Gregory Desvignes beschreibt das Experiment: "Wir haben die Magnetare mit dem 100-m-Radioteleskop in Effelsberg beobachtet und unsere Ergebnisse auch mit Archivdaten verglichen, da Magnetare nicht ständig Radioemission aussenden." "Da die Radioemission von Magnetaren nicht immer vorhanden ist, muss man flexibel sein und schnell reagieren, was mit Radioteleskopen wie dem in Effelsberg auch möglich ist", ergänzt Ramesh Karuppusamy.

Für Ben Stappers ist der spannendste Aspekt des Ergebnisses die mögliche Verbindung zu FRBs: "Wenn zumindest einige FRBs von Magnetaren verursacht werden, könnte die Zeitskala der Substruktur im Strahlungsausbruch uns die Rotationsperiode der zugrunde liegenden Magnetarquelle verraten. Wenn wir diese Periodizität in den Daten finden, wäre dies ein Meilenstein für die Erklärung dieser Art von FRBs als Radioquellen." "Mit den neuen Ergebnissen machen wir uns nun auf, das Rätsel zu lösen", hofft Michael Kramer.

Über die Ergebnisse berichtet das Team in einem Fachartikel, der in der Zeitschrift Nature erschienen ist.

Forum
Magnetare und die rätselhaften Radioblitze. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Murchison Widefield Array: Ein seltener Magnetar mit extrem langer Periode? - 20. Juli 2023
Neutronensterne: Wie entstehen Magnetare? - 20. März 2020
Simulation: Wie die stärksten Magnete im All entstehen - 11. Oktober 2019
XMM-NEWTON & INTEGRAL: Gewaltiger Ausbruch macht Magnetar sichtbar - 17. Juni 2009
Magnetare: Alle 2,6 Sekunden um die eigene Achse - 15. Januar 2009
Magnetare: Objekt mit rätselhaften Blitzen - 25. September 2008
Links im WWW
Kramer, M. et al. (2023): Quasi-periodic sub-pulse structure as a unifying feature for radio-emitting neutron stars, Nat Astron
Max-Planck-Institut für Radioastronomie
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2023/11