Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
ATOMUHREN
Temperaturbestimmung mit einem einzelnen Ion
Redaktion / idw / Pressemitteilung der Physikalisch-Technischen Bundesanstalt (PTB)
astronews.com
7. September 2023

Mit einem neuem Verfahren ist es Forschenden aus Braunschweig nun gelungen, die Frequenzverschiebung durch thermische Strahlung zu bestimmen - ein Faktor, der für die Genauigkeit von optischen Atomuhren von großer Bedeutung ist. Die Ergebnisse dürften auch für eine mögliche Neudefinition der Sekunde von Bedeutung sein.

Uhr

Aufbau der optischen Uhr mit Strontium-Ionen. Foto: PTB [Großansicht]

Optische Atomuhren gelten als die Atomuhren der Zukunft. Sie "ticken" bereits, aber noch ist die Einheit Sekunde durch Cäsium-Atomuhren definiert. Bei ihnen werden Cäsium-Atome durch Mikrowellenstrahlung angeregt, die Atome oder Ionen bei optischen Uhren dagegen durch optische Strahlung. Die häufigeren Schwingungen pro Zeiteinheit von Licht im Vergleich zur Mikrowelle erlauben eine Bestimmung der Frequenz dieser Atomuhren mit weit höherer Genauigkeit.

Forschenden der Physikalisch-Technischen Bundesanstalt (PTB) ist es jetzt gelungen, einen entscheidenden Einflussfaktor auf diese Referenzfrequenz, die Temperatur der Umgebung, genau zu bestimmen. Das neue Verfahren beruht darauf, dass bereits kleinste Frequenzverschiebungen direkt mit der Temperatur korreliert sind. Dazu verglichen die Forscherinnen und Forscher zwei optische Atomuhren miteinander und konnten die Frequenz des Referenzübergangs von Strontium-Ionen mit dreifach höherer Genauigkeit bestimmen. Diese Messung ebnet den Weg zu einer zukünftigen Neudefinition der Sekunde.

Optische Atomuhren beruhen auf Elektronenübergängen in Atomen oder Ionen. Solche Übergänge heißen auch Quantensprünge, weil dabei ein Elektron von einem Energieniveau auf ein anderes springt. Die Frequenz der Strahlung, die bei einem solchen Übergang entsteht, ist eine Naturkonstante und lässt sich höchst genau messen. Entscheidend ist dabei, dass die Übergangsfrequenz entweder nicht gestört wird oder dass etwaige kleine Verschiebungen der Frequenz mit hoher Genauigkeit gemessen und dadurch korrigiert werden. Eine wichtige Ursache für solche Verschiebungen ist die Wärmestrahlung, die von allen Körpern ausgeht, deren Temperatur sich nicht am absoluten Nullpunkt befindet.

Anzeige

Eine besonders kritische Quelle von Wärmestrahlung bei optischen Uhren ist die Ionenfalle, die die Ionen für die Interaktion mit dem Laser an einer festen Stelle hält. Um das thermische Feld, das Ionen in einer Hochfrequenzfalle stört, zu bestimmen, basierten bisherige Arbeiten auf aufwendigen Computersimulationen in Kombination mit Präzisions-Temperaturmessungen. Bei dem von der PTB neu entwickelten Verfahren wird stattdessen das gefangene Ion selbst verwendet, um das thermische Feld genau zu charakterisieren.

Dazu verglichen die Forschenden den Referenzübergang für verschiedene Betriebsmodi mit einer unabhängigen optischen Uhr. Da der Temperaturanstieg in der Umgebung des Ions auf elektrische Verluste zurückzuführen ist, ermöglicht der Betrieb bei unterschiedlichen elektrischen Leistungen eine Extrapolation auf einen Temperaturanstieg von Null Kelvin. Die Forschenden haben dieses einfache Konzept erfolgreich demonstriert und eine auf 88Sr+-Ionen basierende Uhr mit einer auf 171Yb+-Ionen basierenden Uhr auf 17 Stellen genau verglichen. Ihr Ergebnis verbessert nicht nur die Kenntnis der 88Sr+-Uhrenfrequenz um einen Faktor 3, sondern hilft auch bei der Bewertung früherer inkonsistenter Bestimmungen dieser Größe.

Solche Messungen sind von besonderer Bedeutung, da sie internationale Übereinstimmung und einen kontinuierlichen Übergang bei einer künftigen Neudefinition der Sekunde unter Verwendung eines optischen Referenzübergangs sicherstellen. Die Ergebnisse der Untersuchung wurden in der Fachzeitschrift Physical Review Letters veröffentlicht.

Forum
Temperaturbestimmung mit einem einzelnen Ion für noch genauere Zeitmessung. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Kernuhren: Wichtiger Schritt zu noch genaueren Uhren - 23. August 2023
Atomuhren: Dunkle Materie bleibt weiterhin dunkel - 23. Juni 2023
Zeitmessung: Atomuhren sollen noch genauer werden - 16. März 2023
Atomuhren: Die Zeit noch genauer messen - 23. Oktober 2019
Atomuhren: Symmetrie der Raumzeit getestet - 14. März 2019
Erde: Schwerefeldmessung mit portabler Atomuhr - 14. Februar 2018
Zeitmessung: Atomuhr mit noch höherer Genauigkeit - 15. Februar 2016
Zeitmessung: Vier Atomuhren für die Weltzeit - 30. Dezember 2009
QUEST: Die genauste Atomuhr der Welt - 29. Mai 2009
Links im WWW
Steinel, M. et al. (2023): Evaluation of a 88Sr+ optical clock with a direct measurement of the blackbody radiation shift and determination of the clock frequency, Phys. Rev. Lett., 131, 083002
Physikalisch-Technischen Bundesanstalt (PTB)  
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2023/09