Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
UNIVERSUM
Ist das Weltall gar nicht isotrop?
Redaktion / idw / Pressemitteilung der Universität Bonn 
astronews.com
9. April 2020

Egal wohin wir schauen, im Weltall herrschen überall dieselben Regeln: Auf dieser Grundthese fußen zahllose Berechnungen der Astrophysik. Eine aktuelle Studie könnte diese Annahme nun infrage stellen. Sie basiert auf der Auswertung von Beobachtungen von mehr als 800 Galaxienhaufen. Müssen nun viele Eigenschaften des Universums neu überdacht werden?

Universum

Expansion des Universums: Die violetten Bereiche dehnen sich langsamer aus als erwartet, die gelben schneller. Bei Isotropie wäre das Bild einfarbig rot.  Bild: Konstantinos Nikolaos Migkas, Uni Bonn / Astronomy & Astrophysics  [Gesamtansicht]

Mit dem Weltall verhält es sich wie mit einem frisch geformten Rosinenbrötchen, das zum Aufgehen ins Warme gestellt wurde: Seit dem Urknall schwillt es immer weiter an. Bislang dachte man, dass diese Größenzunahme wie bei einem guten Hefeteig in alle Richtungen gleichmäßig erfolgt. Die Astrophysik spricht dabei von "Isotropie". Viele Berechnungen zu fundamentalen Eigenschaften des Universums basieren auf dieser Annahme.

Möglicherweise sind sie alle falsch – oder wenigstens ungenau. Diesen Schluss kann man zumindest ziehen, wenn man die Beobachtungen und Analysen der Wissenschaftler der Universitäten Bonn und Harvard zu Grunde legt. Denn die haben die Isotropie-Hypothese erstmals mit einer neuartigen Methode auf den Prüfstand gestellt, die deutlich verlässlichere Aussagen erlaubt als bislang. Mit einem unerwarteten Ergebnis: Demnach dehnen sich manche Gebiete im All sehr viel schneller aus als sie eigentlich sollten, andere dagegen weitaus langsamer.

"Diese Folgerung legen jedenfalls unsere Messwerte nahe", erklärt Konstantinos Nikolaos Migkas vom Argelander-Institut für Astronomie der Universität Bonn. Migkas und seine Kollegen haben in ihrer Studie einen neuen, effizienten Isotropietest entwickelt. Er basiert auf der Beobachtung so genannter Galaxienhaufen – das sind gewissermaßen die Rosinen im Hefebrötchen. Die Haufen geben Röntgenstrahlung ab, die außerhalb der Erdatmosphäre aufgefangen werden kann (in diesem Fall übernahmen das die satellitengestützten Teleskope Chandra und XMM-Newton).

Anzeige

Anhand bestimmter Merkmale der Strahlung lässt sich die Temperatur der Galaxienhaufen berechnen. Und auch ihre Helligkeit: je heißer sie sind, desto gleißender leuchten sie. In einem isotropen Universum gilt eine einfache Regel: Je weiter ein Himmelsobjekt von uns entfernt ist, desto schneller bewegt es sich von uns weg. Aus seiner Geschwindigkeit kann man daher exakt auf seine Entfernung schließen, und zwar unabhängig von der Richtung, in der das Objekt liegt – so dachte man zumindest bislang.

"Tatsächlich ist es aber so, dass unsere Leuchtkraft-Messungen den Ergebnissen dieser Entfernungsberechnung oft widersprechen", betont Migkas. Denn mit zunehmender Distanz sinkt die Lichtmenge, die auf der Erde ankommt. Wer die ursprüngliche Leuchtkraft eines Himmelskörpers und seine Entfernung kennt, weiß also, wie hell er im Teleskopbild aufleuchten sollte. Und genau an diesem Punkt sind die Wissenschaftler auf Diskrepanzen gestoßen, die sich mit der Isotropie-Hypothese nur schwer vereinbaren lassen: Manche Galaxienhaufen strahlten demnach viel schwächer, als zu erwarten gewesen wäre. Ihre Distanz zur Erde ist demnach vermutlich deutlich größer, als anhand ihrer Geschwindigkeit berechnet. Bei anderen verhielt es sich dagegen gerade umgekehrt.

"Es gibt für diese Beobachtung nur drei mögliche Erklärungen", sagt Migkas, der in der Arbeitsgruppe von Prof. Dr. Thomas Reiprich am Argelander-Institut promoviert. "Zum Einen ist es möglich, dass die Röntgenstrahlung, deren Intensität wir gemessen haben, auf dem Weg von den Galaxienhaufen zur Erde abgeschwächt wird. Dafür könnten zum Beispiel noch unentdeckte Gas- oder Staubwolken innerhalb oder außerhalb der Milchstraße verantwortlich sein. In vorläufigen Tests finden wir diese Diskrepanz zwischen Messung und Theorie aber nicht nur bei Röntgenstrahlung, sondern auch bei anderen Wellenlängen. Es ist extrem unwahrscheinlich, dass irgendein Materienebel völlig verschiedene Strahlungstypen in gleicher Weise absorbiert. Genauer werden wir es allerdings erst in einigen Monaten wissen."

Eine zweite Möglichkeit sind sogenannte "Bulk Flows". Dabei handelt es sich um Gruppen benachbarter Galaxienhaufen, die sich durchgehend in eine bestimmte Richtung bewegen – beispielsweise aufgrund irgendwelcher Strukturen im All, von denen starke Gravitationskräfte ausgehen. Diese würden die Galaxienhaufen daher zu sich ziehen und so ihre Geschwindigkeit (und damit auch ihre daraus abgeleitete Distanz) verändern. "Auch dieser Effekt würde bedeuten, dass viele Berechnungen zu den Eigenschaften des lokalen Universums sehr ungenau wären und wiederholt werden müssten", erklärt Migkas.

Die dritte Möglichkeit ist die gravierendste: Was ist, wenn das Universum gar nicht isotrop ist? Wenn – bildlich gesprochen – die Hefe im Universums-Rosinenbrötchen so ungleichmäßig verteilt ist, dass es sich an manchen Stellen rasch ausbeult, während es in anderen Regionen kaum wächst? Eine solche Anisotropie könnte zum Beispiel durch die Eigenschaften der rätselhaften Dunklen Energie zustande kommen, die wie ein zusätzlicher Treibsatz für die Expansion des Universums wirkt.

Noch fehlt allerdings eine Theorie, die das Verhalten der Dunklen Energie mit den Beobachtungen in Übereinklang bringt. "Wenn es uns gelingt, eine solche Theorie zu entwickeln, könnte das die Suche nach der genauen Natur dieser Energieform enorm beschleunigen", ist sich Migkas sicher.

Die aktuelle Studie basiert auf den Daten von mehr als 800 Galaxienhaufen. 300 von ihnen wurden von den Autoren selbst analysiert; die restlichen Informationen stammen aus bereits veröffentlichten Untersuchungen. Allein die Auswertung der Röntgendaten war so anspruchsvoll, dass sie mehrere Monate in Anspruch nahm. Das neue satelliten-gestützte eROSITA-Röntgenteleskop soll in den nächsten Jahren noch mehrere Tausend weiterer Galaxienhaufen erfassen. Spätestens dann wird sich herausstellen, ob die Isotropie-Hypothese tatsächlich ad Acta gelegt werden muss.

Die Ergebnisse wurden in der Fachzeitschrift Astronomy & Astrophysics veröffentlicht

Forum
Universum: Ist das Weltall gar nicht isotrop? Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
eROSITA: Ein Sechstel des Röntgenhimmels erfasst - 5. Februar 2020
Röntgenastronomie: eRosita soll nach dunkler Energie fahnden - 2. April 2007
Links im WWW
Preprint des Fachartikels bei arXiv.org
Universität Bonn
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2020. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2020/04