Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Teleskope : Artikel [ Druckansicht ]

 
QUASARE
Entstanden Sterne direkt nach dem Urknall?
Redaktion / Pressemitteilung des Max-Planck-Instituts für Astronomie
astronews.com
1. November 2019

Astronominnen und Astronomen haben eine Gaswolke entdeckt, die nur 850 Millionen Jahre nach dem Urknall existiert hat. Sie wurde zufällig bei der Beobachtung eines entfernten Quasars aufgespürt. Eine genauere Analyse der chemischen Zusammensetzung der Wolke lieferte dann Hinweise darauf, dass sich die ersten Sterne nur kurze Zeit nach dem Urknall gebildet haben müssen.

Quasar

Astronomen haben eine urtümliche Gaswolke in der Nähe eines der entferntesten bekannten Quasare gefunden. Die Wolke absorbiert Licht des Hintergrundquasars, und dies in einer Weise, die Rückschlüsse auf die chemische Zusammensetzung der Wolke zulässt. Bild: MPIA-Grafikabteilung [Großansicht]

Wenn Astronominnen und Astronomen ferne Himmelsobjekte beobachten, dann blicken sie zwangsläufig in die Vergangenheit zurück. Ein Team unter der Leitung von Eduardo Bañados vom Max-Planck-Institut für Astronomie hat nun  eine Gaswolke entdeckt, die so weit entfernt ist, dass ihr Licht fast 13 Milliarden Jahre gebraucht hat, um uns zu erreichen. Dementsprechend zeigt uns das Licht, das uns jetzt erreicht, wie die Gaswolke vor fast 13 Milliarden Jahren aussah - und damit nicht mehr als etwa 850 Millionen Jahre nach dem Urknall.

Für die Forschung ist jene Zeit besonders interessant, da sich innerhalb der ersten mehreren hundert Millionen Jahre nach dem Urknall die ersten Sterne und Galaxien bildeten. Die Details dieser frühen Entwicklung sind noch weitgehend unbekannt. Die Entdeckung der außergewöhnlichen Gaswolke verdankt das Team einem Zufall. Bañados, damals an der Carnegie Institution for Science, und seine Kolleginnen und Kollegen waren dabei, eine Gruppe von Quasaren genauer zu untersuchen. Jene Gruppe von 15 fernen Quasare hatte Ko-Autorin Chiara Mazzucchelli für ihre Doktorarbeit am Max-Planck-Institut für Astronomie zusammengestellt und dazu die entferntesten bekannten Vertreter der Gattung versammelt.

Zuerst stellten die Forscher nur fest, dass der Quasar mit der Katalogbezeichnung P183+05 ein eher ungewöhnliches Spektrum aufwies. Aber als Bañados dann eine detailreichere Aufnahme eines Spektrums analysierte, die er mit einem der Magellan-Teleskope am Las-Campanas-Observatorium in Chile angefertigt hatte, erkannte er, worum es sich eigentlich handelte: Das Ungewöhnliche in dem Spektrum waren die Spuren einer Gaswolke, die sehr nahe an dem entfernten Quasar lag – eine der entferntesten Gaswolken, die Astronomen bisher haben identifizieren können.

Anzeige

Quasare sind die extrem hellen aktiven Kerne entfernter Galaxien. Verantwortlich für ihre große Leuchtkraft ist das zentrale supermassereiche Schwarze Loch der Galaxie. Materie, die um dieses Schwarze Loch kreist (bevor sie dann hineinfällt), erwärmt sich dabei auf Temperaturen von Hunderttausenden von Grad und sendet deswegen enorme Mengen an Strahlung aus.

Die große Helligkeit ermöglicht es, Quasare als Hintergrund-Lichtquellen zu nutzen, um Wasserstoff und andere chemische Elemente "in Absorption" zu beobachten: Befindet sich eine Gaswolke direkt zwischen dem Beobachter und einem entfernten Quasar, absorbiert sie einen Teil des Quasar-Lichts und lässt sich auf diese Weise nachweisen. Man untersucht zu diesem Zweck das Spektrum des Quasars, also die regenbogenartige Zerlegung des Lichts in die verschiedenen Wellenlängenbereiche. Die Stärke der Absorption bei unterschiedlichen Wellenlängen liefert Informationen über die chemische Zusammensetzung, Temperatur, Dichte und sogar über die Entfernung der Gaswolke von uns (sowie ihre Entfernung vom Quasar).

Verantwortlich dafür ist der Umstand, dass jedes chemische Element einen "Fingerabdruck" von Spektrallinien hat – jede Linie ein enger Wellenlängenbereich, in dem die Atome dieses Elements Licht besonders gut emittieren oder absorbieren können. Das Vorhandensein eines charakteristischen Fingerabdrucks zeigt das Vorhandensein eines bestimmten chemischen Elements an und lässt sogar Rückschlüsse darauf zu, eine wie große Menge des Elements in der Wolke vorhanden ist.

Aus dem Spektrum der neu entdeckten Gaswolke konnten die Forscher sofort erkennen, wie weit die Wolke von uns entfernt ist – und das sie in diesem Falle in die erste Milliarde Jahre kosmischer Geschichte zurückblickten. Sie fanden auch Spuren von mehreren chemischen Elementen wie Kohlenstoff, Sauerstoff, Eisen und Magnesium. Die Menge dieser Elemente war jedoch winzig und entsprach nur rund einem Achthundertstel der Häufigkeit jener Elemente in der Atmosphäre unserer Sonne.

In der Astronomie werden alle Elemente schwerer als Helium unter den Sammelbegriff "Metalle" zusammengefasst; die Messung macht die Gaswolke zu einem der metallärmsten (und entferntesten) Himmelsobjekte, das wir kennen. "Nachdem wir überzeugt waren, dass wir nur 850 Millionen Jahre nach dem Urknall auf urtümliches Gas gestoßen waren, haben wir uns gefragt, ob dieses System vielleicht sogar die chemischen Fingerabdrücke der allerersten Generation von Sternen enthält," erinnert sich Michael Rauch von der Carnegie Institution of Science, Mitautor der neuen Studie.

 Die Suche nach diesen Sternen der ersten Generation, die zur sogenannten "Population III" gehören, ist eine der wichtigsten Aufgaben die es zu lösen gilt um herauszufinden, was im frühen Universum geschah. Im späteren Universum spielen chemische Elemente, die schwerer als Wasserstoff sind, eine wichtige Rolle, wenn es darum geht, Gaswolken zu Sternen kollabieren zu lassen. Aber diese chemischen Elemente, insbesondere Kohlenstoff, werden ihrerseits erst in Sternen produziert und in Supernova-Explosionen ins All geschleudert. Für die ersten Sterne stand noch kein Kohlenstoff als Kollaps-Beschleuniger zur Verfügung, denn direkt nach der Urknallphase gab es nur Wasserstoff- und Heliumatome. Das macht die ersten Sterne grundlegend anders als alle späteren Sterne.

Die Analyse des Spektrums der Wolke zeigte, dass deren chemische Zusammensetzung alles andere als urtümlich war, sondern erstaunlich genau den relativen Häufigkeiten der Elemente entsprach, wie man sie in den heutigen intergalaktischen Gaswolken findet. Das stellt für die Modelle der Entstehung der ersten Sterne eine beachtliche Herausforderung dar. Insbesondere muss die Entstehung der ersten Sterne diesen Ergebnissen nach bereits deutlich früher begonnen haben als zu jener Zeit, zu der wir die Gaswolke beobachten. Es musste nämlich seit Beginn der ersten Sternentstehung genügend Zeit vergangen sein, dass sich das heutige Gleichgewicht einstellen konnte – und die Spuren der frühen Sternchemie von den nachfolgenden Sternexplosionen mindestens einer weiteren Generation von Sternen überlagert werden konnten.

Besonders wichtig ist dabei die Rolle der sogenannten Supernovae vom Typ Ia. Solche Supernovae finden rund eine Milliarde Jahre nach der Entstehung der beteiligten Sterne statt. Das schiebt die Entstehung jener Sterne weit in die Vergangenheit, in die Zeit direkt nach dem Urknall. Nachdem das Team diese eine sehr frühe Wolke gefunden haben, suchen sie systematisch nach weiteren Exemplaren. "Es ist spannend, dass wir die Metallizität und die Elementhäufigkeiten so früh in der Geschichte des Universums messen können. Aber wenn wir die Spuren der allerersten Sterne identifizieren wollen, müssen wir noch weiter in die Vergangenheit vordringen. Ich bin optimistisch, dass wir noch weiter entfernte Gaswolken finden werden, die uns helfen können zu verstehen, wie die ersten Sterne geboren wurden," so einer der beteiligten Astronomen.

Über die Ergebnisse berichtet das Team in einem Fachartikel, der in der Zeitschrift Astrophysical Journal erschienen ist.

Forum
Entstanden Sterne direkt nach dem Urknall? Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Planck: Die ersten Sterne entstanden später - 6. Februar 2015
Magnetismus: Magnetfelder existierten vor den ersten Sternen - 3. Januar 2013
Simulation: Erste Sterne keine Einzelgänger - 4. Februar 2011
Sterne: Wie die ersten Sterne entstanden - 2. Juli 2010
Sterne: Die Entstehung der ersten Protosterne - 1. August 2008
Sterne: Waren die ersten Sterne dunkel? - 3. Dezember 2007
Spitzer: Das Licht der ersten Sterne - 3. November 2005
Milchstraße: Erste Sterne entstanden schon kurz nach dem Urknall - 18. August 2004
Links im WWW
Preprint des Fachartikels bei arXiv.org
Max-Planck-Institut für Astronomie
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2019. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2019
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2019/11