Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Raumfahrt : Artikel [ Druckansicht ]

 
MAIUS-1
Kurztrip ins All für ultrakalte Atome
Redaktion / idw / Pressemitteilung der Leibniz Universität Hannover
astronews.com
29. Oktober 2018

Anfang 2017 hatte ein Forschungsverbund unter Federführung der Leibniz Universität Hannover die Forschungsrakete MAIUS-1 ins All geschossen. Während des Fluges untersuchten die Wissenschaftlerinnen und Wissenschaftler dort in mehr als 100 Experimenten das Verhalten von Materiewellen und erstmals Bose-Einstein-Kondensate im Weltall. Jetzt liegen erste Ergebnisse vor.

Atom-Chip

Der Atom-Chip mit dem magnetische Felder zum Fangen und Manipulieren des Bose-Einstein-Kondensats erzeugt werden.  Foto: Stephan T. Seidel [Großansicht]

In der Fachzeitschrift Nature berichten Mitglieder des Teams über die Erzeugung und Beobachtung der sogenannten Bose-Einstein-Kondensation, einem extremen Zustand nahe dem Temperatur-Nullpunkt in dem Materie eine Welle formt. "Dies ist uns sogar mit einer größeren Anzahl von Atomen gelungen, als wir zuvor erwartet hatten", zeigt sich Maike Lachmann vom Institut für Quantenoptik der Leibniz Universität Hannover zufrieden. Die Physikerin ist Teil des Teams, das die komplizierten Experimente geplant und durchgeführt hat.

Die hohe Teilchenzahl wie auch die hohe Anzahl an Experimenten gelang mithilfe eines sogenannten Atom-Chips. Er dient dazu, Atome und Atomwolken in miniaturisierten Magnetfallen zu speichern und zu manipulieren. Neben der Erzeugung des Bose-Einstein-Kondensats, haben die Wissenschaftlerinnen und Wissenschaftler mit seiner Hilfe die entstehenden Materiewellen geführt, geformt und ihr Verhalten im freien Fall studiert. Im All konnten diese Experimente ungestört von der Schwerkraft durchgeführt und anschließend mit theoretischen Modellen verglichen werden. Mit den Modellen können nun Strategien entwickelt werden, um zukünftige Weltraumexperimente am Boden schneller und besser vorzubereiten. "Wir wollen ja keine 20 Raketen abfeuern", scherzt Projektleiter Professor Ernst Rasel.

Erst ein Bruchteil der Ergebnisse ist bisher ausgewertet. Ein Fokus liegt jetzt auf den Experimenten zur Interferometrie der Materiewellen, also der Messung, wie sich mehrere Wellen überlagern. Interferometer mit Bose-Einstein-Kondensaten im All gelten gegenwärtig als der vielversprechendste Ansatz für Messungen mit unerreichter Genauigkeit, da die Empfindlichkeit der Messung mit der Dauer des freien Falls steigt. Damit werden zukünftig beispielsweise die sehr präzise Vermessung des Gravitationsfeldes der Erde oder die Entwicklung genauerer und satellitenunabhängiger Navigationsgeräte möglich.

Anzeige

Aber auch grundlegende Fragen der Physik, etwa zur Relativitätstheorie Albert Einsteins, wollen die Forscherinnen und Forscher überprüfen. Bislang galt dies aber aufgrund der Komplexität der Experimente und der bei einem Raketenstart und im All herrschenden extremen Anforderungen als nicht durchführbar. "Diese Missionen stoßen daher auch auf sehr viel Skepsis. Selbst die meisten Experten bezweifelten, dass unser Ansatz realisierbar wäre", erinnert sich Rasel. Dem Team der beteiligten Forschungseinrichtungen ist es jedoch mithilfe des Atom-Chips gelungen, den ursprünglich raumgroßen Versuchsaufbau so zu miniaturisieren, dass er in die Forschungsrakete passte.

Die nun veröffentlichten Ergebnisse sind auch für die amerikanische Raumfahrtbehörde NASA von Interesse. Sie hat im Mai das Cold Atom Lab auf die internationale Raumstation ISS gebracht, um dort ähnliche Experimente durchzuführen. "Das NASA-Team ist sehr interessiert an unseren Erfahrungen. Wir freuen uns über die Zusammenarbeit", erläutert Rasel. Die Kooperation soll nun noch ausgebaut werden.

In einem gemeinsamen Projekt, welches auf den Erfahrungen der MAIUS-Mission und des Cold Atom Lab aufbaut, sollen ultrakalte Atome und Bose-Einstein-Kondensate auf der ISS in Langzeitversuchen erforscht werden. Die neuen Anwendungsaspekte der Atom-Chips sind aber nicht nur für den Weltraum attraktiv: Mittlerweile öffnen sich auch viele, die vorher skeptisch waren, dem Einsatz von Atomchips und Bose-Einstein-Kondensaten für die Interferometrie für die Quantensensorik. Letztere sind ein wichtiger Baustein für Zukunftstechnologien, wie etwa die Erdbeobachtung mit Hilfe von Quantengravimetern oder Gyroskopen.

Um ein Bose-Einstein Kondensat zu erzeugen, wird eine Wolke von Atomen in mehreren Schritten bis nahezu zum absoluten Temperatur-Nullpunkt heruntergekühlt, so dass die Bewegung der Atome beinahe zum Stillstand kommt. Die Atome erreichen dabei einen für Nicht-Physiker schwer vorstellbaren Aggregatzustand, der nicht mehr alleine mit klassischen Größen wie fest, flüssig oder gasförmig beschrieben werden kann. Sie verlieren ihre Eigenständigkeit und nehmen einen makroskopischen Wellenzustand ein, der ähnliche Eigenschaften hat, wie die Laserstrahlung im Falle elektromagnetischer Wellen. Bose-Einstein-Kondensate zeigen eine Reihe ungewöhnlicher Eigenschaften wie Suprafluidität. Theoretisch wurden sie bereits in den 20er Jahren des vergangenen Jahrhunderts von Nathan Bose und Albert Einstein vorhergesagt, aber erst 1995 experimentell in kalten Gasen realisiert.

Forum
Kurztrip ins All für ultrakalte Atome. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
MAIUS 1: Bose-Einstein-Kondensat in Schwerelosigkeit - 23. Januar 2017
Links im WWW
Leibniz Universität Hannover
In sozialen Netzwerken empfehlen
 
 
Anzeige
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2018. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2018
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2018/10