Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
RELATIVITÄTSTHEORIE
Gekrümmte Raumzeit im Labor
Redaktion / idw / Pressemitteilung der Universität Heidelberg
astronews.com
17. Januar 2023

Raum und Zeit sind nach Einsteins Allgemeiner Relativitätstheorie untrennbar miteinander verbunden. Nun ist es Forschenden gelungen, in einem Laborexperiment eine effektive Raumzeit zu realisieren, die sich manipulieren lässt. Auf diese Weise können sie eine ganze Familie gekrümmter Universen simulieren, um verschiedene kosmologische Szenarien zu untersuchen.

XDF

Das Hubble eXtreme Deep Field, ein tiefer Blick ins All im Bereich des Sternbilds Chemischer Ofen. Bild: NASA, ESA, G. Illingworth, D. Magee und P. Oesch (University of California, Santa Cruz), R. Bouwens (Leiden University) und das HUDF09-Team  [Großansicht]

Raum und Zeit sind nach Einsteins Allgemeiner Relativitätstheorie untrennbar miteinander verbunden. In unserem Universum – es ist kaum messbar gekrümmt – ist die Struktur dieser Raumzeit vorgegeben. Die Entstehung von Raum und Zeit auf kosmischen Zeitskalen vom Urknall bis in die Gegenwart ist Gegenstand aktueller Forschung, die sich jedoch nur auf die Beobachtung unseres einen Universums berufen kann. Wesentlicher Bestandteil kosmologischer Modelle sind die Expansion und Krümmung des Raumes. In einem flachen Raum wie unserem heutigen Universum ist die kürzeste Strecke zwischen zwei Punkten immer eine Gerade.

"Es ist allerdings denkbar, dass unser Universum in seiner Anfangsphase gekrümmt war. Die Folgen einer gekrümmten Raumzeit zu untersuchen ist daher eine drängende Forschungsfrage", sagt Prof. Dr. Markus Oberthaler, Wissenschaftler am Kirchhoff-Institut für Physik der Universität Heidelberg. Mit seiner Forschungsgruppe "Synthetische Quantensysteme" hat er dafür einen Quantenfeldsimulator entwickelt. Der im Labor realisierte Quantenfeldsimulator besteht aus einer Wolke von Kalium-Atomen, die bis auf einige Nanokelvin über dem absoluten Temperaturnullpunkt abgekühlt wurde. Dabei entsteht ein Bose-Einstein-Kondensat – ein spezieller quantenmechanischer Zustand des atomaren Gases, der bei sehr kalten Temperaturen erreicht wird.

Anzeige

Dieses Bose-Einstein-Kondensat, so Oberthaler, würde als idealer Hintergrund wirken, auf dem kleinste Anregungen, das heißt Änderungen des Energiezustandes der Atome, sichtbar werden. Die Form der Atomwolke bestimmt dabei die Dimensionalität und die Eigenschaften der Raumzeit, auf der sich diese Anregungen wellenartig bewegen. Im Universum sind es drei Dimensionen des Raumes und eine vierte – die der Zeit. In dem Experiment der Heidelberger Physikerinnen und Physiker sind die Atome in einer dünnen Schicht gefangen. So können sich Anregungen nur in zwei Raumrichtungen ausbreiten – der Raum ist zweidimensional. Gleichzeitig lässt sich die Atomwolke in den verbleibenden zwei Dimensionen fast beliebig formen, womit es möglich ist, auch gekrümmte Raumzeiten zu realisieren.

Die Wechselwirkung zwischen den Atomen kann durch ein Magnetfeld präzise eingestellt werden, wodurch sich die Ausbreitungsgeschwindigkeit der wellenartigen Anregungen auf dem Bose-Einstein-Kondensat ändert. "Für die Wellen auf dem Kondensat ist die Ausbreitungsgeschwindigkeit abhängig von der Dichte und der Wechselwirkung der Atome. Das gibt uns die Möglichkeit, Bedingungen wie in einem expandierenden Universum zu schaffen", erklärt Prof. Dr. Stefan Flörchinger, zuvor Wissenschaftler an der Universität Heidelberg und seit Anfang dieses Jahres an der Universität Jena. Er hat das quantenfeldtheoretische Modell ausgearbeitet, mit dem die experimentellen Ergebnisse quantitativ abgeglichen wurden.

Mit dem Quantenfeldsimulator können kosmische Phänomene, beispielsweise die Produktion von Teilchen aufgrund der Expansion des Raumes, und die Raumzeitkrümmung selbst messbar gemacht werden. "Kosmologische Fragestellungen laufen normalerweise auf unvorstellbar großen Skalen ab. Diese ganz konkret im Labor untersuchen zu können, eröffnet ganz neue Möglichkeiten der Forschung, indem wir neue theoretische Modelle experimentell testen können", sagt Team-Mitglied Celia Viermann. "Das Wechselspiel von gekrümmter Raumzeit und quantenmechanischen Zuständen im Labor zu erforschen, wird uns noch einige Zeit beschäftigen", so Oberthaler, der mit seiner Forschungsgruppe Mitglied im Exzellenzcluster STRUCTURES der Universität Heidelberg ist.

Über ihre Ergebnisse berichtete das Team Ende vergangenen Jahres in der Fachzeitschrift Nature.

Forum
Gekrümmte Raumzeit im Labor. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Festkörperphysik: Das Universum in einem Kristall - 16. August 2017
Relativitätstheorie: Raumkrümmung im Labor untersucht - 29. Dezember 2015
Links im WWW
Universität Heidelberg
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2023/01