Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
XENON1T
Ein äußerst seltener Zerfall
Redaktion / Pressemitteilung der Universität Münster
astronews.com
8. Mai 2019

Ein internationales Forscherteam hat die längste jemals direkt in einem Detektor beobachtete Halbwertszeit gemessen. Mit dem XENON1T-Instrument, das die Physikerinnen und Physiker eigentlich zur Suche nach Dunkler Materie einsetzen, gelang es ihnen zum ersten Mal, den Zerfall des Atoms Xenon-124 zu beobachten. Die Entdeckung spricht für die Leistungsfähigkeit des Detektors.

XENON1T

Ein Ausschnitt des imposanten Experiments: Zu sehen ist ein zylinderförmiger Kryostat, der an einer Stahlkonstruktion inmitten eines riesigen Wassertanks hängt. Bild: XENON Collaboration  [Großansicht]

1.500 Meter tief im italienischen Gran Sasso-Gebirge befindet sich das Untergrundlabor Laboratori Nazionali del Gran Sasso (LNGS), in dem die Wissenschaftler abgeschirmt von jeglicher Radioaktivität mit ihrem Experiment nach Teilchen der Dunklen Materie suchen. Bislang hat sie noch niemand entdeckt. Theoretischen Annahmen zufolge sollten diese Teilchen aber sehr selten mit einem Atomkern "zusammenstoßen" – und auf Basis dieser Annahme funktioniert der XENON1T-Detektor: Das Herzstück des Experiments ist ein zylinderförmiger Tank von etwa einem Kubikmeter Volumen, gefüllt mit 3.200 Kilogramm flüssigem Xenon bei einer Temperatur von minus 95 Grad Celsius.

Prallt ein Teilchen der Dunklen Materie auf einen Xenon-Atomkern, überträgt es einen Teil seiner Bewegungsenergie auf den Kern, der daraufhin andere Xenon-Atome anregt und dadurch zum Leuchten bringt. Diese sehr schwachen Signale aus ultraviolettem Licht werden im oberen und unteren Bereich des Zylinders von empfindlichen Lichtsensoren nachgewiesen. Dieselben Sensoren messen auch eine winzige Menge an elektrischer Ladung, die bei der Kollision ebenfalls frei wird.

Wie eine neue Studie jetzt zeigt, ist der XENON1T-Detektor auch in der Lage, andere seltene physikalische Phänomene zu messen – wie etwa den doppelten Elektroneneinfang. Um diesen Prozess zu verstehen, muss man wissen, dass ein Atomkern aus positiv geladenen Protonen und neutralen Neutronen besteht und von mehreren Atomschalen umhüllt ist, die jeweils mit negativ geladenen Elektronen besetzt sind. Das Element Xenon kommt in der Natur in verschiedenen Varianten vor, die sich nur in der Zahl der Neutronen im Kern unterscheiden.

Anzeige

Eines dieser sogenannten Isotope, Xenon-124, enthält 54 Protonen und 70 Neutronen. Beim doppelten Elektroneneinfang fangen zwei Protonen des Kerns zwei Elektronen aus der innersten Schale des Atoms ein, wandeln sich in zwei Neutronen um und senden zwei Neutrinos aus. Da in der inneren Schale der Atomhülle nun zwei Elektronen fehlen, sortieren sich die übrigen Elektronen um. Dabei wird Energie frei, die in Form von Röntgenstrahlen und sogenannten Auger-Elektronen ausgesendet wird.

Dieser doppelte Elektroneneinfang geschieht allerdings extrem selten und wird von allgegenwärtigen Spuren "normaler" Radioaktivität überdeckt. Daher sind diese Signale nur sehr schwer nachzuweisen. Zu den wichtigen Beiträgen der deutschen Gruppen zum XENON-Experiment gehören verschiedene Methoden, störende Signale von Radioaktivität soweit wie möglich zu reduzieren.

Und so wurde der doppelte Elektroneneinfang nachgewiesen: Die Röntgenstrahlen aus dem doppelten Elektroneneinfang innerhalb des flüssigen Xenons erzeugten ein erstes, kurzes Lichtsignal und freie Elektronen. Diese bewegten sich in den oberen Teil des Detektors, der mit gasförmigem Xenon gefüllt war, und erzeugten dort ein zweites Lichtsignal. Die Zeitdifferenz zwischen den beiden Signalen entspricht der Zeit, die die Elektronen brauchten, um oben anzukommen.

Aus dieser Differenz sowie der Information, welche Lichtsensoren das zweite Signal "gesehen" hatten, konnten die Wissenschaftler die Position bestimmen, an der der doppelte Elektroneneinfang stattgefunden hatte. Aus der Größe der Signale ermittelten sie die beim Zerfall freigewordene Energie.

Über ein Jahr lang speicherten die Wissenschaftler alle Signale, die im Detektor auftauchten, jedoch ohne sie sofort anzuschauen. Der Grund: Es handelte sich um ein sogenanntes Blind-Experiment – das bedeutet, dass die Forscher die Messungen im interessanten Energiebereich bis zum Abschluss der Datenanalyse nicht sehen konnten. Auf diesem Wege wurde gewährleistet, dass die Ergebnisse nicht durch persönliche Erwartungen verzerrt wurden.

Da die Wissenschaftler alle durch radioaktive Zerfälle verursachten Störsignale genau beschreiben konnten, war am Ende klar: Die 126 Signale im später aufgedeckten Bereich konnten nur vom doppelten Elektroneneinfang des Xenon-124 stammen. Aus diesen nun erstmals beobachteten Kernzerfällen berechneten die Physiker die enorme Halbwertszeit von 1,8 × 1022 Jahren. Dies ist der langsamste Prozess, der jemals direkt nachgewiesen werden konnte. Es ist zwar bekannt, dass das Atom Tellur-128 mit einer noch längeren Halbwertszeit zerfallen muss, allerdings wurde dieser Zerfall noch niemals direkt beobachtet. Wissenschaftler leiteten seine Halbwertszeit indirekt aus einem anderen Prozess ab.

"Dass es uns gelungen ist, diesen Vorgang zu beobachten, zeigt eindrucksvoll, welches Potenzial in unserer Messmethode steckt – auch für Signale, die nicht von Dunkler Materie herrühren", sagt Prof. Dr. Christian Weinheimer, Teilchenphysiker an der Westfälischen Wilhelms-Universität Münster (WWU), dessen Gruppe die Studie leitete.

Die neuen Ergebnisse machen deutlich, wie präzise der XENON1T-Detektor sehr seltene Zerfälle registrieren und Störsignale herausfiltern kann. Beim Beobachteten doppelten Elektroneneinfang handelt es sich um einen Zerfallskanal, bei dem zwei Neutrinos ausgesendet werden. Dieser liefert aber auch erste wichtige Erkenntnisse für Folgemessungen des sogenannten neutrinolosen doppelten Elektroneneinfangs. Mit dessen noch ausstehender Entdeckung könnten wichtige Fragen zur Natur der Neutrinos beantwortet werden.

Der Detektor XENON1T hat von Sommer 2016 bis Dezember 2018 Daten genommen und wurde dann abgeschaltet. Aktuell bauen die Wissenschaftler der XENON-Kollaboration das Experiment für die neue Phase XENONnT um, bei der die aktive Detektormasse verdreifacht wird. Zusammen mit einer weiteren Unterdrückung von Störsignalen aufgrund normaler Radioaktivität wird das den Detektor um eine Größenordnung empfindlicher machen. Auch in dieser Phase des Projekts sind die deutschen Gruppen federführend beteiligt.

Über die Entdeckung berichtete das Team in einem Fachartikel, der in der Zeitschrift Nature erschienen ist.

Forum
XENON1T misst äußerst seltenen Zerfall. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Teilchenphysik: Grenzen für Dunkle-Materie-Modelle - 6. November 2017
XENON1T: Suche nach Signal der Dunklen Materie - 11.November 2015
XENON100: Kein Signal der Dunklen Materie - 21. August 2015
WIMPs: Neue Grenzen für Dunkelmaterie-Partikel - 14. April 2011
Links im WWW
Universität Münster
In sozialen Netzwerken empfehlen
 
 
Anzeige
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2019. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2019
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2019/05