Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Teleskope : Artikel [ Druckansicht ]

 
SCHWARZE LÖCHER
Ein Quasar wird gewogen
Redaktion / Pressemitteilung des Max-Planck-Instituts für Astronomie
astronews.com
27. September 2021

Erstmals ist es gelungen, die Masse eines gewaltigen, weit entfernten Schwarzen Lochs mit einer neuen Methode zu bestimmen. Das als Spektroastrometrie bezeichnete Verfahren fußt auf der Vermessung von Strahlung, die von Gas in der Umgebung der supermassereichen Schwarzen Löcher stammt. Mit modernen Großteleskopen sind solche Messungen relativ unkompliziert durchzuführen.

Gemini North

Die Kuppel des Teleskops Gemini North auf Hawaii. Dieses Teleskop hat einen Hauptspiegeldurchmesser von 8,1 Metern und einen Laserleitstern, der zusammen mit adaptiver Optik dabei hilft, den Einfluss der Atmosphäre auf die Beobachtungen zu minimieren. Gemini North wurde für die Machbarkeitsstudie zur Spektroastrometrie eingesetzt.  Bild: Gemini Observatory, CC BY 4.0 [Großansicht]

In der Kosmologie ist die Massenbestimmung der supermassereichen Schwarzen Löcher im jungen Universum eine wichtige Messung, um die zeitliche Entwicklung des Kosmos nachvollziehen zu können. Nun ist es Felix Bosco in enger Zusammenarbeit mit Jörg-Uwe Pott, beide vom Max-Planck-Institut für Astronomie (MPIA) in Heidelberg, sowie den ehemaligen MPIA-Forschern Jonathan Stern von der Tel Aviv University in Israel und Joseph Hennawi von der University of California in Santa Barbara in den USA und der Universiteit Leiden in den Niederlanden zum ersten Mal gelungen, die Machbarkeit der direkten Massenbestimmung eines Quasars mithilfe der Spektroastrometrie nachzuweisen.

Diese Methode erlaubt, die Masse von weit entfernten Schwarzen Löchern in leuchtkräftigen Quasaren direkt aus optischen Spektren zu ermitteln, ohne dass weitreichende Annahmen über die räumliche Gasverteilung erforderlich sind. Die spektakulären Einsatzmöglichkeiten der spektroastrometrischen Bestimmung von Quasarmassen wurde bereits vor einigen Jahren am MPIA systematisch untersucht

Quasare beherbergen supermassereiche Schwarze Löcher in den Zentren von Galaxien und gehören zu den hellsten kosmischen Objekten. Daher sind sie über große Distanzen nachweisbar und ermöglichen somit die Erforschung des frühen Universums. Befindet sich Gas in der Nähe eines Schwarzen Lochs, wird es angezogen, kann jedoch nicht auf direktem Weg hineinstürzen. Stattdessen bildet sich eine Akkretionsscheibe aus, ein Strudel, mit dessen Hilfe die Materie in das Schwarze Loch strömt. Hohe Reibungskräfte in diesem Materiestrom, der letztendlich das Schwarze Loch füttert, heizen die Akkretionsscheibe auf einige Hunderttausend bis eine Million Grad auf. Die Intensität der dabei ausgesandten Strahlung lässt die Quasare so hell erscheinen, dass sie alle Sterne der Galaxie überstrahlen.

Anzeige

Seit einigen Jahrzehnten sind weitere Komponenten innerhalb von Quasaren bekannt wie die sogenannte "broad emission-line region" (BLR, Deutsch: Region mit breiten Emissions-Linien), eine Zone, in der ionisierte Gaswolken mit Geschwindigkeiten von einigen Tausend Kilometern pro Sekunde das zentrale Schwarze Loch umkreisen. Die intensive und energiereiche Strahlung der Akkretionsscheibe regt das Gas in der BLR zur Emission an, die in den Spektren in Form von Spektrallinien sichtbar wird. Aufgrund des Dopplereffekts sind sie durch die hohen Umlaufgeschwindigkeiten jedoch stark verbreitert und geben so der BLR ihren Namen.

Bosco und seine Kollegen haben nun die optisch hellste Spektrallinie des Wasserstoffs (Hα) in der BLR des Quasars J2123-0050 im Sternbild Wassermann vermessen, dessen Licht aus einer Zeit stammt, als das Universum gerade einmal 2,9 Milliarden Jahre alt war. Mit der Methode der Spektroastrometrie haben sie den wahrscheinlichen Abstand der Strahlungsquelle in der BLR zum Zentrum der Akkretionsscheibe ermittelt, wo das supermassereiche Schwarze Loch vermutet wird. Gleichzeitig liefert die Hα-Linie die Radialgeschwindigkeit des Wasserstoffgases, also jene Geschwindigkeitskomponente, die in Richtung Erde weist.

So wie die Masse der Sonne die Bahngeschwindigkeiten der Planeten des Sonnensystems bestimmt, lässt sich aus diesen Daten die Masse des Schwarzen Lochs im Zentrum des Quasars präzise ermitteln, wenn die Gasverteilung räumlich aufgelöst werden kann. Selbst für die heutigen Großteleskope ist die Ausdehnung der BLR dafür tatsächlich aber viel zu klein. "Allerdings können wir durch die Trennung von spektraler und räumlicher Information im einfallenden Licht, sowie durch statistische Modellierung der Messdaten Abstände von sehr viel weniger als einem Bildpixel zum Zentrum der Akkretionsscheibe sichtbar machen", erklärt Bosco.

Die Präzision der Messung wird durch die Dauer der Beobachtungen bestimmt. Für J2123-0050 errechneten die Astronomen so eine Masse des Schwarzen Lochs von höchstens 1,8 Milliarden Sonnenmassen. "Die exakte Massenbestimmung war noch gar nicht das Hauptziel dieser ersten Beobachtungen", sagt Jörg-Uwe Pott, Leiter der Arbeitsgruppe "Schwarze Löcher und Akkretionsmechanismen" am MPIA. "Wir wollten stattdessen zeigen, dass die Methode der Spektroastrometrie prinzipiell bereits mit Hilfe der heute verfügbaren 8-Meter-Teleskope die kinematische Signatur der zentralen Quasarmassen nachweisen kann."

Die Spektroastrometrie könnte damit eine wertvolle Erweiterung der Werkzeuge sein, mit der Forschende Massen von Schwarzen Löchern bestimmen. Hennawi ergänzt: "Mit der deutlich gesteigerten Empfindlichkeit des James-Webb-Weltraumteleskops (JWST) und des derzeit im Bau befindlichen Extremely Large Telescope werden wir in naher Zukunft Quasarmassen bei höchsten Rotverschiebungen bestimmen können." Pott, der auch die Heidelberger Beiträge zur ersten Nahinfrarotkamera MICADO des ELT leitet, fügt hinzu: "Die jetzt veröffentlichte Machbarkeitsstudie hilft uns dabei, unsere geplanten ELT-Forschungsprogramme auszudefinieren und vorzubereiten".

 Zu den Alternativen der Vermessung von BLR in nahen Quasaren zählt eine heute weit verbreitete Methode: das "Reverberation Mapping" (RM, etwa: Echolotkartierung). Sie basiert auf der Bestimmung der Lichtlaufzeit, die eine Helligkeitsschwankung in der Akkretionsscheibe benötigt, um das umliegende Gas zur erhöhten Strahlung anzuregen. Daraus kann die mittlere Ausdehnung der BLR abgeschätzt werden. Diese Methode hat jedoch neben den teils erheblichen Unsicherheiten in den Annahmen entscheidende Nachteile bei der Vermessung der massereichsten und entferntesten Schwarzen Löcher im Vergleich zur Spektroastrometrie.

Der Durchmesser der BLR korreliert mit der Masse des zentralen Schwarzen Lochs, so dass die Signalverzögerung zwischen der Akkretionsscheibe und der BLR für massereiche Schwarze Löcher im frühen Universum sehr groß und die notwendigen Messreihen von mehreren Jahren undurchführbar lang werden. Zudem nehmen die Helligkeitsschwankungen, und damit die Messbarkeit, tendenziell mit zunehmender Schwarzlochmasse und steigender Quasarleuchtkraft ab. Die Methode des RM ist daher für leuchtkräftige Quasare nur selten anwendbar und eignet sich deswegen nicht für das Ausmessen von Quasaren auf großen kosmologischen Entfernungen.

Allerdings dient das RM als Grundlage zur Kalibrierung anderer indirekter Methoden, die für nahe Quasare zunächst etabliert und dann auf weiter entfernte, leuchtkräftige Quasare mit massereichen Schwarzen Löchern ausgedehnt wurden. Die Güte dieser indirekten Ansätze steht und fällt mit der Genauigkeit der RM-Methode. Auch hier kann die Spektroastrometrie helfen, die Massenbestimmung massereicher Schwarzer Löcher auf eine breitere Basis zu stellen. So deutet die Auswertung der Daten von J2123-0050 darauf hin, dass der Zusammenhang zwischen der Größe der BLR und der Quasarleuchtkraft, der zunächst mit der RM-Methode für eher nahe, leuchtschwache Quasare festgestellt wurde, tatsächlich auch für leuchtstarke Quasare zu stimmen scheint. Weitere Messungen sind hier aber nötig.

Die BLR kann in nahen aktiven Galaxien auch interferometrisch wie beispielsweise mit dem GRAVITY-Instrument des Very Large Telescope Interferometer (VLTI) vermessen werden. Der große Vorteil der Spektroastrometrie liegt aber darin, dass lediglich eine einzige hochempfindliche Beobachtung benötigt wird. Zudem erfordert sie weder die technisch sehr komplexe Zusammenschaltung mehrerer Teleskope wie bei der Interferometrie, noch lange Messreihen über Monate und Jahre hinweg wie beim RM. So reichte der Forschergruppe um Bosco eine einzelne Beobachtungsreihe mit einer Belichtungszeit von vier Stunden mit dem 8-Meter-Klasse-Teleskop Gemini North auf Hawaii, unterstützt von einem Korrektursystem aus einem Laserleitstern und Adaptiver Optik.

Große Erwartungen setzen die Forschenden in die nächste Generation von optischen Großteleskopen wie dem Extremely Large Telescope (ELT) der ESO. Die Kombination von vergrößerter Lichtsammelfläche mit fünffach erhöhter Bildschärfe würde am ELT die hier vorgestellte Beobachtung in wenigen Minuten ermöglichen. "Wir werden mit dem ELT zahlreiche Quasare bei unterschiedlichen Entfernungen in einer einzigen Nacht astrometrisch vermessen, und so die kosmologische Entwicklung der Schwarzlochmassen direkt beobachten können.", so Bosco.

Die Ergebnisse stellte das Team in einem Fachartikel vor, der in der Zeitschrift Astrophysical Journal veröffentlicht wird.

Forum
Ein Quasar wird gewogen. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Quasare: Entferntester Quasar im jungen Universum - 8. März 2021
VLT: Wie entfernte Quasare wachsen - 23. Dezember 2019
Links im WWW
Bosco, F. et al. (2021): Spatially Resolving the Kinematics of the <~ 100 μas Quasar Broad-line Region Using Spectroastrometry II. The First Tentative Detection in a Luminous Quasar at z=2.3, ApJ, accepted (arXiv.org-Preprint)
Max-Planck-Institut für Astronomie
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2020. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2021/09