Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
CERN
Genauester Vergleich von Materie und Antimaterie
Redaktion / idw / Pressemitteilung des Max-Planck-Instituts für Kernphysik
astronews.com
6. Januar 2022

Am CERN wurde der bislang genaueste Vergleich zwischen Protonen und Antiprotonen durchgeführt: Danach sind die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen auf elf Stellen identisch. Außerdem scheinen sich, wie erwartet worden war, Materie und Antimaterie unter Schwerkraft gleich zu verhalten.

BASE

BASE-Experiment am Antiprotonen-Entschleuniger am CERN in Genf: Zu sehen ist die Kontrollperipherie, der supraleitende Magnet, in dem sich die Penningfalle befindet, und das Antiproton-Transfer-Strahlrohr.  Foto: Stefan Sellner, RIKEN/BASE [Großansicht]

Symmetrie und Schönheit sind eng miteinander verbunden, nicht nur in der Musik, der Kunst und der Architektur, sondern auch in den grundlegenden physikalischen Gesetzen, die unser Universum beschreiben. Es ist in gewisser Weise ironisch, dass wir unsere Existenz einer gebrochenen Symmetrie in der besten fundamentalen Theorie die es gibt, dem Standardmodell der Teilchenphysik, zu verdanken scheinen. Einer der Eckpfeiler des Modells ist die Invarianz bei Umkehr von Ladung, Parität und Zeit, abgekürzt CPT (für charge, parity, time).

Auf die Gleichungen des Standardmodells angewandt, verwandelt die CPT-Transformation Materie in Antimaterie. Als Folge der CPT-Symmetrie haben Paare von Materie und Antimaterie die gleichen Massen, Ladungen und magnetischen Momente, die beiden letzteren mit entgegengesetztem Vorzeichen. Eine weitere Folge von CPT: trifft ein Teilchen auf sein Antiteilchen, vernichten sie sich zu reiner Energie, was in zahlreichen Laborexperimenten bestätigt wurde. In diesem Sinne ist die Existenz unseres Universums keineswegs selbstverständlich. Wir haben Grund zu der Annahme, dass beim Urknall Materie und Antimaterie in gleichen Mengen entstanden sind. Warum nur die Materie übrig blieb, aus der unser Sonnensystem und die Himmelskörper im Universum bestehen, ist noch ungeklärt.

Ein weiteres heißes Thema in der modernen Physik ist die Frage, ob sich Materie und Antimaterie unter Schwerkraft gleich verhalten. In ihrer jetzt vorgestellten Studie vergleichen die Wissenschaftlerinnen und Wissenschaftler der BASE-Kollaboration am Forschungszentrum CERN die Ladung-zu-Masse-Verhältnisse von Antiprotonen und Protonen sowie – während des Umlaufs der Erde um die Sonne – die Ähnlichkeit von Uhren aus Antimaterie und Materie. Sie sind also beiden Fragen gleichzeitig mit einer Messung nachgegangen.

Anzeige

Für seine hochpräzisen Untersuchungen verwendete das Team um Stefan Ulmer, leitender Wissenschaftler am RIKEN in Japan und Sprecher der BASE-Kollaboration, eine Penning-Falle, also einen elektromagnetischen Behälter, der ein einzelnes geladenes Teilchen speichern und nachweisen kann. Ein Teilchen in einer solchen Falle schwingt mit einer charakteristischen Frequenz, die durch seine Masse definiert ist. Ein "Abhören" der Schwingungsfrequenzen von Antiprotonen und Protonen in derselben Falle ermöglicht es, deren Massen zu vergleichen.

"Durch Beladen eines zylindrischen Stapels mehrerer solcher Penning-Fallen mit Antiprotonen und negativen Wasserstoffionen konnten wir einen Massenvergleich innerhalb von nur vier Minuten durchführen, 50 Mal schneller als bei früheren Proton/Antiproton-Vergleichen anderer Gruppen", erläutert Ulmer. "Seit unseren früheren Messungen haben wir außerdem den Versuchsaufbau technisch erheblich verbessert. Dies erhöht die Stabilität des Experiments und verringert systematische Verschiebungen in den Messwerten."

Mit diesem optimierten Instrument hat das BASE-Team im Verlauf von eineinhalb Jahren einen Datensatz von rund 24.000 einzelnen Frequenzvergleichen erfasst. Durch Kombination aller Messergebnisse fanden die Forscher, dass das Ladung-zu-Masse-Verhältnis von Antiprotonen und Protonen identisch ist, und zwar mit einer Genauigkeit von 16 Teilen in einer Billion, also einer Zahl mit 11 signifikanten Stellen. Das verbessert die Genauigkeit der bisher besten Messung – ebenfalls von BASE – um mehr als einen Faktor vier: ein erheblicher Fortschritt in der Präzisionsphysik.

Und wie kommt nun die Schwerkraft ins Spiel? Ein Teilchen, das in einer Penning-Falle schwingt, kann man als "Uhr" betrachten, ein Antiteilchen als "Anti-Uhr". Bei starker Gravitation gehen die Uhren langsamer. Während der Langzeitmessung von eineinhalb Jahren war die Erde auf ihrer elliptischen Bahn unterschiedlich starker Anziehungskraft der Sonne ausgesetzt. Falls Antimaterie und Materie verschieden auf Schwerkraft reagierten, würden die Materie- und Antimaterie-Uhren entlang der Flugbahn der Erde unterschiedliche Frequenzverschiebungen erfahren.

Das BASE-Team konnte bei der Analyse ihrer Daten aber keine derartige Frequenzanomalie feststellen. So konnten es erstmals direkte und weitgehend modellunabhängige Grenzen für ein anomales Verhalten von Antimaterie unter Schwerkraft setzen – oder anders ausgedrückt: im Rahmen der Messgenauigkeit die Gültigkeit des schwachen Äquivalenzprinzips für Uhren bestätigen.

Um mit noch höherer Präzision messen zu können, müssen die Antiprotonen aus der Beschleunigerumgebung der Antimaterie-Fabrik des CERN in ein ruhiges Labor gebracht werden. Dazu konstruiert das BASE-Team derzeit die transportable Antiprotonenfalle BASE-STEP. Zunächst ist geplant, die Antiprotonen in ein anderes Labor am CERN zu verlagern. Wenn das geklappt hat, könnten die Antiprotonen an verschiedene Fallenlabors verteilt werden. Die verbesserten Messbedingungen werden die Genauigkeit weiter steigern und hoffentlich zu unserem Verständnis des Ungleichgewichts zwischen Materie und Antimaterie beitragen.

Über ihre Ergebnisse berichtet das Team in einem Fachartikel, der in der Zeitschrift Nature erschienen ist.

Forum
Genauester Vergleich von Materie und Antimaterie. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Antimaterie: Kein Unterschied zu Materie messbar - 19. Januar 2017
Elementarteilchenphysik: Materie-Antimaterie-Symmetrie erneut bestätigt - 14. November 2016
Materie und Antimaterie: Suche nach dem kleinen Unterschied - 7. September 2015
Teilchenphysik: Proton und Antiproton genau vermessen - 18. August 2015
Physik: Plasma aus Materie und Antimaterie im Labor - 4. Mai 2015
Teilchenphysik: Antimaterie und Materie sind symmetrisch - 28. Juli 2011
Teilchenphysik: Forschung mit tiefgekühlten Neutronen - 9. Mai 2011
CERN: Forscher fangen Anti-Wasserstoff ein - 18. November 2010
Teilchenphysik: Die vierte Eigenschaft des Elektrons - 19. Juli 2010
Antimaterie: Forscher werfen Blick in Gegenwelt - 30. Oktober 2002
Teilchenphysik: Der Unterschied von Materie und Antimaterie - 13. Juli 2001
Links im WWW
Max-Planck-Institut für Kernphysik
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2022/01/2201-005.shtml