Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Teleskope : Artikel [ Druckansicht ]

 
VLT
Ein gerade entstehender Gasriese
Redaktion / Pressemitteilung des Max-Planck-Instituts für Astronomie
astronews.com
2. Juli 2018

Mithilfe des Instruments SPHERE am Very Large Telescope der ESO haben Astronomen jetzt einen extrem jungen extrasolaren Planeten entdeckt, der sich noch in seiner Entstehungsphase befindet. Der junge Gasriese mit der Bezeichnung PDS 70 b wurde innerhalb einer Lücke der protoplanetaren Scheibe des Sterns PDS 70 nachgewiesen.

PDS70

Aufnahme der Scheibe um den Stern PDS70 mit dem SPHERE-Instrument. Der junge Exoplanet PDS 70 b ist deutlich als heller Punkt rechts von dem durch eine Blende abgedeckten Stern zu sehen. Bild: ESO/A. Müller et al.  [Großansicht]

Die Suche nach Exoplaneten hat bislang etwa 3800 Exemplare mit unterschiedlichsten Größen, Massen sowie Abständen von ihren Muttersternen zutage gefördert. Wie sie entstehen, weiß man aber nicht genau. Zwar verfügen die Forscher über Theorien und Modelle möglicher Entstehungs-Szenarien. Jedoch war es bislang kaum möglich, Planeten im Zustand ihrer Entstehung nachzuweisen, den Entstehungsprozess direkt zu untersuchen und seine Eigenschaften mit den Berechnungen der Modelle zu vergleichen. Genau das ist Astronomen des Max-Planck-Instituts für Astronomie (MPIA) in Heidelberg und des Konsortiums des SPHERE-Instruments am Very Large Telescope der Europäischen Südsternwarte (ESO) nun gelungen.

Der Planet PDS 70 b wurde in einer Entfernung von 22 Astronomischen Einheiten (AE) von seinem Zentralgestirn PDS 70 entdeckt. Er ist damit 22 Mal so weit von der Sonne entfernt wie die Erde. "Wir haben uns für unsere Untersuchung mit PDS 70 einen Stern ausgesucht, bei dem man bereits vermutete, dass dort ein junger Planet seine Kreise ziehen könnte", erzählt Miriam Keppler, die als Doktorandin am MPIA arbeitet.

PDS 70, ein 5,4 Millionen Jahre junger sogenannter T-Tauri-Stern, ist von einer protoplanetaren Scheibe aus Gas und Staub umgeben, die 130 AE breit ist. Zum Vergleich: Der äußere Rand des Sonnensystems, der Kuipergürtel, reicht nur bis etwa 50 AE. Solche Scheiben bestehen aus Material, das nach der Entstehung des Sterns übrig blieb. Die zirkumstellare Scheibe um PDS 70 weist eine große Lücke auf. Man vermutet, dass solch eine Lücke typischerweise dadurch entsteht, dass ein junger Riesenplanet auf seiner Bahn um den Mutterstern Scheibenmaterie aufsammelt. Durch die Wechselwirkung mit der Scheibe verändert er dabei langsam seinen Abstand zum Zentralgestirn. In dieser Weise räumt er allmählich eine größere Zone in der Scheibe frei.

In einer anschließenden Untersuchung unter der Leitung von André Müller konnte die Gruppe der Astronomen ein spektakuläres Bild des PDS 70-Systems erhalten. Auf dieser Aufnahme ist der Planet am inneren Rand des Scheibenspalts eindeutig erkennbar. Er läuft einmal innerhalb von etwa 120 Jahren um seinen Mutterstern um. Ein Spektrum von PDS 70 b erlaubte es den Astronomen, seine atmosphärischen und physikalischen Eigenschaften zu bestimmen. "Diese Entdeckung bietet uns eine beispiellose Möglichkeit, theoretische Modelle der Planetenbildung zu testen", erklärt Müller begeistert.

Anzeige

Tatsächlich zeigt die Analyse, dass PDS 70 b ein riesiger Gasplanet mit mehreren Jupitermassen und einer Temperatur von etwa 1200 Kelvin ist. Er ist damit ungleich heißer als jeder Planet in unserem Sonnensystem. PDS 70 b ist jünger als der zentrale Stern und dürfte nach wie vor wachsen. Die Daten zeigen außerdem, dass der Planet von Wolken umgeben ist, die die Strahlung des Planetenkerns und seiner Atmosphäre modifizieren. "Aufgrund der neuen Entfernungsdaten, die der Gaia-Satellit geliefert hat, mussten wir unsere Zahlen noch einmal korrigieren. Laut Gaia ist PDS 70 rund 370 Lichtjahre von uns entfernt," erklärt Keppler. PDS 70 b bestätigt zudem die Vorstellung, dass sich Gasplaneten wie Jupiter in größerer Entfernung von ihrem Zentralstern bilden sollten.

Um protoplanetare Scheiben sichtbar zu machen, wenden die Forscher raffinierte Beobachtungs- und Auswerteverfahren an. Auf normalen Aufnahmen überstrahlt der Stern alle Objekte in seinem direkten Umfeld. Mit dem SPHERE-Instrument kann das Licht, das uns direkt vom Stern erreicht, jedoch weitgehend eliminiert werden. Dafür nutzt die Kamera die Eigenschaft der Polarisation des Lichts. Linear polarisierte Lichtwellen schwingen nur in einer Ebene. Das Licht eines Sterns ist dagegen überwiegend unpolarisiert. Trifft es jedoch auf die Scheibe, wird das Licht bei der Streuung an den Staubteilchen linear polarisiert. Nutzt man nun einen entsprechenden Polarisationsfilter, der Lichtwellen in nur einer Schwingungsebene durchlässt, detektiert oder blockiert man je nach Ausrichtung das Licht, das von verschiedenen Bereichen der Scheibe kommt.

Fotografen nutzen einen ähnlichen Effekt, wenn sie Reflexionen von einer glatten Oberfläche ausblenden wollen. Vom Licht des Sterns erhält man dagegen unabhängig von der Filterkonfiguration immer ein Signal. Dieser Unterschied erlaubt es den Astronomen, das direkte Sternenlicht aus den Daten herauszurechnen. Unterstützt wird die Operation durch eine weitere Methode: die Astronomen decken den Stern mit einer Blende ab. Übrig bleibt ein Abbild der Scheibe.

"Nach zehn Jahren der Entwicklung neuer, leistungsstarker astronomischer Instrumente wie SPHERE zeigt uns diese Entdeckung, dass wir endlich in der Lage sind, Planeten direkt bei ihrer Entstehung zu finden und zu studieren. Ein lang gehegter Traum wird wahr", unterstreicht Prof. Thomas Henning, Direktor am MPIA, leitender Wissenschaftler der beiden Studien und einer der verantwortlichen Wissenschaftler des SPHERE-Instruments.

Über die Beobachtungen berichten die Astronomen in zwei Fachartikeln, die in der Zeitschrift Astronomy & Astrophysics veröffentlicht werden.

Forum
VLT beobachtet gerade entstehenden Gasriesen. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Extrasolare Planeten: Ein entstehender Planet um LkCa15 - 19. November 2015
Ferne Welten - die astronews.com Berichterstattung über die Suche nach extrasolaren Planeten
Links im WWW
Preprint des Fachartikels über die Entdeckung bei arXiv.org
Preprint des Fachartikels über die weitere Charakterisierung bei arXiv.org
Max-Planck-Institut für Astronomie
In sozialen Netzwerken empfehlen
 
 
Anzeige
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2018. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2018
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2018/07