Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
MATERIALWISSENSCHAFT
Materie unter Druck
Redaktion / Pressemitteilung der Universität Bayreuth 
astronews.com
27. August 2015

Im Inneren von Gasplaneten herrscht ein extremer Druck, der nach Ansicht von Wissenschaftlern beispielsweise dazu führen sollte, dass hier Wasserstoff in einer auf der Erde unbekannten exotischen Form existiert. Nun haben Forscher im Labor mit dem Element Osmium experimentiert. Unter hohem Druck konnten sie dabei einen ganz neuen Materiezustand beobachten.

Jupiter

Die jüngsten Laborexperimente könnten auch helfen, das Innere von Gasplaneten wie Jupiter besser zu verstehen. Bild:  NASA/ESA  [Großansicht]

Bei einem Kompressionsdruck von mehr als 770 Gigapascal - dem höchsten Druck, der bisher im Labor erzeugt wurde - ändert sich das Elektronenverhalten in Osmium, dem Element mit der höchsten bekannten Massendichte, auf eine äußerst ungewöhnliche Weise. Kernelektronen, die normalerweise passiv sind, treten miteinander in Wechselwirkung.

Der jetzt erstmals beobachtete Effekt lässt vermuten, dass unter extremen Drücken weitere, bisher unbekannte Materiezustände entstehen könnten. Die neuen Erkenntnisse können das Verständnis von Strukturen und Prozessen in extrem komprimierter Materie weiter voranbringen und das Design hochbelastbarer Funktionsmaterialien fördern. Sie können zudem die Astrophysik bei der Modellierung des Inneren von großen Planeten und Sternen unterstützen.

Osmium ist ein Platinmetall, das in der Erdkruste sehr selten vorkommt und sich durch eine außerordentliche Härte auszeichnet. In keinem anderen chemischen Element ist das Verhältnis von Masse zu Volumen derart hoch. Und kein anderes Element ist so widerstandsfähig gegenüber Kompressionsdrücken. Eine internationale Forschungsgruppe aus Deutschland, Frankreich, Schweden, den Niederlanden und den USA hat Eigenschaften und Strukturen dieses ungewöhnlichen Metalls jetzt erstmals bei stetig steigenden Drücken analysiert.

Anzeige

Zweistufige Diamantstempelzellen machten es möglich, den Druck auf eine Rekordhöhe von mehr als 770 Gigapascal zu steigern. In keinem anderen Labor der Welt wurde bisher bei Raumtemperatur ein derart hoher Kompressionsdruck erzielt - mehr als doppelt so hoch wie der Druck, der im inneren Erdkern herrscht. Prof. Dubrovinskaia und Prof. Dubrovinsky von der Universität Bayreuth haben die Forschungsarbeiten koordiniert. Erst vor wenigen Jahren wurden von ihnen die leistungsstarken Stempelzellen entwickelt.

Diese enthalten zwei Stempel aus Nanodiamanten, deren halbrunde Köpfe einander exakt gegenüber liegen. Dazwischen wird die Materialprobe platziert. Die Stempel haben jeweils einen Durchmesser von rund 10 bis 20 Mikrometern, also zwischen 0,01 bis 0,02 Millimetern. Aufgrund der winzigen Korngröße der Nanodiamanten, die unterhalb von 50 Nanometern liegt, sind sie extrem belastbar.

Während der enormen Steigerung des Kompressionsdrucks blieb die hexagonale Grundstruktur des Osmiums durchweg erhalten. Bei rund 150 Gigapascal aber trat erstmals eine Anomalie im Aufbau der kristallinen Elementarzellen auf. Diese Strukturänderung ließ sich mit bekannten physikalischen Vorgängen erklären. Doch eine weitere Anomalie, die in den Elementarzellen bei etwa 440 Gigapascal beobachtet werden konnte, überraschte die Forscher. "Hier führen konventionelle Erklärungen nicht weiter. Vielmehr sieht es so aus, als ob die Strukturänderung durch bisher unbekannte Verhaltensweisen der Kernelektronen verursacht wird", erklärt Dubrovinskaia.

Kernelektronen befinden sich in unmittelbarer Nähe der Atomkerne und sind an chemischen Bindungen nicht beteiligt. Dies unterscheidet sie von den sogenannten Valenzelektronen, die von den Atomkernen deutlich weiter entfernt sind. Valenzelektronen lösen sich von der räumlichen Zugehörigkeit zu ihren jeweiligen Atomen und bilden 'elektronische Bänder', so dass chemische Bindungen zwischen verschiedenen Atomen entstehen.

Unter den hohen, stetig ansteigenden Kompressionsdrücken bleiben die Kernelektronen aber nicht länger in ihren ursprünglichen, klar unterscheidbaren Zuständen. Sie beginnen miteinander zu interagieren – und zwar, wie theoretische Berechnungen zeigen, bei 392 Gigaspascal. "Die Strukturänderungen des Osmiums, die wir bei rund 440 Gigapascal im Experiment beobachtet haben, lassen sich daher mit Interaktionen der Kernelektronen gut erklären", so Dubrovinskaia.

Die an der Untersuchung beteiligten Wissenschaftler, an der aus Deutschland auch Forscher des DESY in Hamburg beteiligt waren, schlagen für die sehr ungewöhnlichen Interaktionen der Kernelektronen, deren Zustände dabei ineinander übergehen, die Bezeichnung "Core Level Crossing Transition" vor. "Hier eröffnet sich ein vielversprechendes Gebiet für weitere Untersuchungen", meint Dubrovinsky.

"Denn wenn extrem hohe Drücke imstande sind, sogar in einem innerlich sehr stabilen Metall wie Osmium ein neuartiges Elektronenverhalten auszulösen und so die Materialstrukturen zu ändern, lassen sich möglicherweise noch andere bisher unbekannte Materiezustände erzeugen. Nicht zuletzt deshalb ist die Hochdruckforschung, wie wir sie hier an der Universität Bayreuth betreiben, ein vielversprechender Forschungszweig", so der Forscher. Er hält es für durchaus möglich, dass die dabei gewonnenen Erkenntnisse bei der Entwicklung neuer, für Extrembedingungen geeigneter Funktionsmaterialien genutzt werden können.

Über die Resultate berichteten die Forscher jetzt in der Fachzeitschrift Nature.

Forum
Materie unter Druck. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Chemie: Wenn Wasserstoff metallisch wird - 18. November 2011
Links im WWW
Universität Bayreuth
In sozialen Netzwerken empfehlen
 
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2015/08