Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Teleskope : Artikel  [Druckansicht]

 
LBT
"First Light" für Doppelteleskop
Redaktion / MPIfR
astronews.com
27. Oktober 2005

Auf dem Weg zur Inbetriebnahme des größten und modernsten Einzelteleskops der Welt wurde jetzt ein wichtiger Meilenstein erreicht: das so genannte "First Light". Vom Large Binocular Telescope (LBT), an dem deutsche Institute zu einem Viertel beteiligt sind, erhoffen sich die Astronomen bislang unerreichte Einblicke ins All. Die erwarteten Bilder sollen sogar schärfer sein, als die von Hubble.

LBT

Das Large Binocular Telescope (LBT), nach der Inbetriebnahme und dem "first light" für den ersten 8,4 Meter-Spiegel. Foto: LBT Konsortium.

NGC 891


"LBT First Light Bild" der Galaxie NGC 891 aufgenommen am 12. Oktober 2005. Diese Galaxie befindet sich im Sternbild Andromeda in einer Entfernung von 24 Millionen Lichtjahren. Die Galaxie NGC 891 ist wissenschaftlich sehr interessant, weil es in ihr viele Regionen mit sehr heftiger Sternentstehung und Röntgenstrahlung gibt. Dieses Bild wurde mit der "Large Binocular Camera" aufgenommen, die aus vier CCD-Detektoren mit je 2048 x 4608 Pixeln besteht. Foto: LBT Konsortium. [Großansicht]

Die ersten wissenschaftlichen Himmelsaufnahmen wurden jetzt mit einem der beiden Spiegel des Large Binocular Telescope (LBT) gemacht. Das unter Astronomen "First Light" (erstes Licht) genannte Ereignis ist ein entscheidender Meilenstein auf dem Weg zur Inbetriebnahme des größten und modernsten Einzelteleskops der Welt. Das LBT wird schärfer und tiefer ins Universum schauen als es jemals zuvor möglich war.

Unter Leitung des Max-Planck-Instituts für Astronomie in Heidelberg sind fünf deutsche Institute mit insgesamt 25 Prozent Beobachtungszeit am LBT-Projekt beteiligt. Dazu zählen neben dem Max-Planck-Institut für Astronomie auch die Max-Planck-Institute für extraterrestrische Physik in Garching und für Radioastronomie in Bonn, sowie das Astrophysikalische Institut Potsdam und die Landessternwarte Heidelberg.

Das Large Binocular Telescope auf dem 3.190 Meter hohen Mount Graham (Arizona) ist eines der herausragenden wissenschaftlich-technischen Projekte der modernen astronomischen Forschung. Der Name des Teleskops ist Programm: Das völlig neuartige Fernrohr wird über zwei riesige Sammelspiegel mit jeweils 8,4 Metern Durchmesser verfügen, die, auf einer gemeinsamen Montierung installiert, gleichzeitig auf ferne Himmelskörper ausgerichtet werden, ähnlich wie ein Feldstecher.

Die Oberflächen der Spiegel sind dabei auf ein 20 Millionstel Millimeter extrem genau poliert: ein LBT-Spiegel - vergrößert auf die Fläche des Bodensees - hätte nur "Wellen" von einem fünftel Millimeter Höhe. Trotz ihrer Größe wiegt jeder der beiden Hauptspiegel "nur" 16 Tonnen. Die viel dickeren Spiegel klassischer Teleskope würden in dieser Dimension etwa 100 Tonnen wiegen und den Bau eines Fernrohrs dieser Größenordnung unmöglich machen.

Durch die Vereinigung der Strahlengänge der beiden Einzelspiegel sammelt das LBT so viel Licht wie ein Teleskop mit einem Spiegeldurchmesser von 11,8 Meter. Damit wird das mit einem 2,4 Meter-Spiegel ausgestattete Weltraumteleskop Hubble um den Faktor 24 übertroffen.

Von noch größerer Bedeutung ist jedoch, dass das LBT dabei auch die Auflösung eines Teleskops von 22,8 Meter Durchmesser erreichen wird, weil es über die modernste adaptive Optik verfügt und die Bilder der beiden Teleskopspiegel in einem interferometrischen Verfahren überlagert werden. Damit gelingt es den Astronomen, durch Luftturbulenzen verursachte Unschärfen in den Bildern auszugleichen und weitaus schärfer als Hubble ins Universum zu blicken.

"Das LBT wird uns völlig neue Möglichkeiten für die Erforschung von Planeten außerhalb des Sonnensystems oder zur Untersuchung der fernsten und damit jüngsten Galaxien eröffnen", sind sich Prof. Dr. Thomas Henning, Geschäftsführender Direktor am Max-Planck-Institut für Astronomie (MPIA), und Dr. Tom Herbst (MPIA), Projektwissenschaftler im deutschen Konsortium, einig.

Anzeige

"Was die Wissenschaftler in der nahen Zukunft an faszinierender Bildqualität erwarten können, lassen bereits die ersten LBT-Bilder erahnen", sagt Prof. Dr. Gerd Weigelt, Direktor am Max-Planck-Institut für Radioastronomie in Bonn. Obwohl die Aufnahmen zunächst "nur" mit einem der beiden Hauptspiegel gewonnen wurden, zeigen sie bereits einen beeindruckenden Blick auf ein fernes Milchstraßensystem.

Bei dem als NGC891 bekannten Objekt im Sternbild Andromeda handelt es sich um eine Spiralgalaxie in 24 Millionen Lichtjahren Entfernung, welche wir - von der Erde aus - von der Seite sehen. "Das Objekt ist für die Astronomen von besonderem Interesse, weil es auch im Röntgenbereich enorme Mengen an Strahlung aussendet", so Prof. Dr. Reinhard Genzel, Geschäftsführender Direktor des Max-Planck-Instituts für extraterrestrische Physik in Garching. "Diese Strahlung entsteht durch eine große Anzahl massereicher Sterne, die ihr Leben durch spektakuläre Supernova-Explosionen beenden - eine Art kosmisches Feuerwerk."

Die Bilder entstanden mit Hilfe der hochmodernen Large Binocular Camera (LBC), die von den italienischen Partnern des Projekts entwickelt wurde. Kamera und Teleskop wirken zusammen wie eine riesige Digitalkamera. Dank des besonders großen Gesichtsfeldes werden damit sehr effiziente Beobachtungen beispielsweise der Entstehung und Entwicklung ferner und damit lichtschwacher Galaxien möglich.

Doch die LBC-Kamera ist erst der Anfang einer ganzen Reihe von High-tech-Instrumenten, mit denen das LBT in Zukunft ausgestattet sein wird. "Ein Teleskop ohne Instrument ist wie ein Auge ohne Netzhaut", so Prof. Dr. Hans-Walter Rix, Direktor am Max-Planck-Institut für Astronomie. "Nur in Kombination mit leistungsfähigen Messinstrumenten, die mit empfindlichsten Detektoren ausgestattet sind, wird aus einem Teleskop wie dem LBT ein hochleistungsfähiges Observatorium", ergänzt der seit vielen Jahren im LBT-Projekt engagierte Wissenschaftler.

Vor allem über die Entwicklung und den Bau dieser Instrumente bringen sich die deutschen Partner maßgeblich in das LBT-Projekt ein und sichern sich damit 25 Prozent der Beobachtungszeit. So bauen Wissenschaftler, Techniker und Elektroniker der LBT-Beteiligungsgesellschaft (LBTB) die Kombi-Instrumente LUCIFER 1 und 2, mit denen sowohl Bilder als auch Spektren der Himmelsobjekte im nahen Infrarot gewonnen werden können. "Dies ist wichtig für die detaillierte Untersuchung einer großen Anzahl von Galaxien verschiedener Entwicklungsstufen", so Prof. Dr. Immo Appenzeller von der Landessternwarte Heidelberg.

"Hingegen ist das Instrument PEPSI ein besonders hochauflösender so genannter Echelle-Spektrograph, mit dem man etwa die Struktur und Dynamik an der Oberfläche von Sternen besonders gut untersuchen kann", erläutern Prof. Dr. Matthias Steinmetz und Prof. Dr. Klaus Strassmeier, Direktoren am Astrophysikalischen Institut Potsdam (AIP). Am AIP werden auch die Acquisition, Guiding- and Wavefront Sensing-Einheiten (AGW) gebaut, welche sowohl für die exakte Nachführung des Teleskops als auch für die Korrektur der Spiegel sorgen.

Damit am Ende auch die volle Leistungsfähigkeit des LBT und seiner Instrumente zur Verfügung steht, wird das LINC-NIRVANA-Instrument gebaut. Dieses in Zusammenarbeit mit den italienischen Partnern entwickelte Gerät bildet das Herzstück des LBT, denn es wird die Lichtbündel der beiden Hauptspiegel in einer gemeinsamen Brennebene zusammenführen und die durch die Erdatmosphäre verursachten Bildstörungen korrigieren.

Dabei werden an die optischen, elektronischen und mechanischen Komponenten höchste Ansprüche gestellt, da Teile von LINC-NIRVANA durch seinen Einsatz im infraroten Spektralbereich auf minus 196 Grad Celsius gekühlt werden müssen, um nicht durch Wärmestrahlung der Umgebung "geblendet" zu werden. Auf diesem Gebiet der "Kryotechnologie" haben sich die Wissenschaftler und Techniker am Max-Planck-Institut für Astronomie - nicht zuletzt im Rahmen ihrer Beteiligung an großen wissenschaftlichen Weltraumobservatorien - eine hervorragende Kompetenz erworben.

Dank der eindrucksvollen ersten Bilder wissen die Astronomen jetzt, dass sich die über etwa 20 Jahre erstreckenden Planungs-, Entwicklungs- und Baumassnahmen gelohnt haben und das 120-Millionen-Dollar-Projekt auf dem besten Wege ist, neue Einblicke in den Kosmos zu eröffnen. Das war auch das große Ziel der Initiatoren der deutschen Beteiligung am LBT, zu denen auch Prof. Günther Hasinger (Max-Planck-Institut für extraterrestrische Physik, früher AIP) und Prof. Dr. Steven Beckwith (früher MPIA) gehören. Doch nicht nur die lange am Projekt Beteiligten werden von den Beobachtungen am LBT profitieren. An allen Partnerinstituten werden künftig Studenten und Nachwuchswissenschaftler Gelegenheit haben, LBT-Daten zu analysieren und neue Beobachtungsprogramme zu initiieren.

Forum
First Light für das LBT.  Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch

LBT: Mit einem Zweiten sieht man besser - 22. Oktober 2004
Adaptive Optik: High-Tech für Riesen-Feldstecher - 15. November 2001

Links im WWW
The Large Binocular Telescope Observatory
In sozialen Netzwerken empfehlen
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2005/10