Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
ATOMPHYSIK
Proton ist leichter als gedacht
Redaktion / idw / Pressemitteilung des Max-Planck-Instituts für Kernphysik
astronews.com
30. August 2017

Wie schwer ist ein Proton? Wissenschaftler aus Deutschland und Japan wollten es genau wissen und haben mit Präzisionsmessungen die Genauigkeit der bisherigen Bestimmungen um einen Faktor drei verbessert. Dabei stellte sich heraus, dass der neue Wert signifikant kleiner ist, als der aktuelle Standardwert für die Masse des Protons.

Falle

Penningfallen-Apparatur zur Bestimmung der Masse des Protons. Bild: MPI für Kernphysik [Gesamtansicht]

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in Heidelberg (MPIK) nicht nur "just for fun" oder um einen neuen Rekord aufzustellen. Das Proton ist der Kern des Wasserstoffatoms und Baustein in allen anderen Atomkernen.

Die Protonenmasse ist daher eine wichtige Größe in der Atomphysik: Sie beeinflusst unter anderem, wie sich die Elektronen um den Atomkern bewegen. Der Einfluss zeigt sich in den Spektren, also welche Lichtfarben (Wellenlängen) Atome absorbieren und wieder abstrahlen können. Indem man diese Wellenlängen mit theoretischen Vorhersagen vergleicht, kann man fundamentale physikalische Theorien prüfen.

Des Weiteren soll ein präziser Vergleich der Massen des Protons und des Antiprotons bei der Suche nach dem entscheidenden Unterschied – außer dem umgekehrten Vorzeichen der Ladung – zwischen Materie und Antimaterie helfen. Dieser Unterschied ist winzig, aber es muss ihn geben, denn das Universum besteht praktisch vollständig aus Materie, obwohl im Urknall Materie und Antimaterie in gleichen Mengen entstanden sein müssen.

Werbung

Als geeignete "Waagen" für Ionen haben sich Penningfallen bewährt. In solch einer Falle kann man einzelne geladene Teilchen, wie etwa ein Proton, mit Hilfe von elektrischen und magnetischen Feldern nahezu ewig einsperren. Das gefangene Teilchen führt in der Falle eine charakteristische Bewegung aus, die durch drei Frequenzen beschrieben wird – und diese lassen sich messen und daraus die Masse des Teilchens berechnen. Um dabei die angestrebte hohe Präzision zu erreichen, war eine ausgefeilte Messtechnik erforderlich.

Der Massenstandard für Atome ist das Kohlenstoffisotop 12C, das per Definition 12 atomare Masseneinheiten schwer ist. "Wir haben es als direkten Vergleich herangezogen", berichtet Sturm. "Zunächst haben wir je ein Proton und ein Kohlenstoffion in getrennten Abteilen unserer Penningfallen-Apparatur gespeichert, dann abwechselnd je eines der beiden Ionen in das in der Mitte liegende Messabteil geschleust und ihre Bewegung darin vermessen."

Das Verhältnis der beiden Messwerte ergibt die Masse des Protons direkt in atomaren Einheiten. Das Messabteil ist mit einer eigens dafür entwickelten speziellen Elektronik ausgestattet. Andreas Mooser vom japanischen Forschungsinstitut RIKEN erklärt deren Zweck: "Sie ermöglichte es uns, das Proton trotz seiner etwa 12-mal geringeren Masse und 6-mal kleineren Ladung unter identischen Bedingungen zu messen wie das Kohlenstoffion."

Das Resultat für die Masse des Protons von 1,007276466583(15)(29) atomaren Masseneinheiten ist dreimal genauer als der derzeit empfohlene Wert, wobei die Zahlen in Klammern die statistische und systematische Unsicherheit angeben. Jedoch ist der neue Wert signifikant kleiner als der aktuelle Standardwert. Messungen anderer Autoren wiesen bei der Masse des Tritiumatoms, des schwersten Wasserstoffisotops und der Masse von leichtem Helium im Vergleich zum "halbschweren" Wasserstoffmolekül HD Unstimmigkeiten auf.

"Unser Ergebnis trägt dazu bei, dieses Rätsel zu lösen, weil es die Protonenmasse in die richtige Richtung korrigiert", zeigt sich Blaum erfreut. Florian Köhler-Langes vom MPIK erklärt, wie die Forscher die Genauigkeit ihrer Messung noch weiter steigern wollen: "In Zukunft werden wir ein drittes Ion in unserem Fallenturm speichern. Indem wir die Bewegung dieses Referenzions gleichzeitig messen, können wir den Unsicherheitsfaktor eliminieren, der von Schwankungen des Magnetfelds herrührt."

Über ihre Arbeit berichteten die Wissenschaftler im vergangenen Monat in den Physical Review Letters.

Forum
Proton ist leichter als gedacht. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Teilchenphysik: Das Deuteron ist kleiner als gedacht - 12. August 2016
Teilchenphysik: Proton und Antiproton genau vermessen - 18. August 2015
Physik: Plasma aus Materie und Antimaterie im Labor - 4. Mai 2015
Teilchenphysik: Antimaterie und Materie sind symmetrisch - 28. Juli 2011
Teilchenphysik: Forschung mit tiefgekühlten Neutronen - 9. Mai 2011
CERN: Forscher fangen Anti-Wasserstoff ein - 18. November 2010
Teilchenphysik: Die vierte Eigenschaft des Elektrons - 19. Juli 2010
Antimaterie: Forscher werfen Blick in Gegenwelt - 30. Oktober 2002
Links im WWW
Preprint des Fachartikels bei arXiv.org
Max-Planck-Institut für Kernphysik
In sozialen Netzwerken empfehlen
 
 
Werbung
Werbung
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2017. Alle Rechte vorbehalten.  W3C

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2017
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: http://www.astronews.com/news/artikel/2017/08/1708-022.shtml