Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
DUNKLE MATERIE
Hinweise durch Gravitationswellen?
Redaktion / Pressemitteilung des Max-Planck-Instituts für Kernphysik
astronews.com
8. Dezember 2016

Mit dem ersten direkten Nachweis von Gravitationswellen begann in diesem Jahr das Zeitalter der Gravitationswellen-Astronomie. Wissenschaftler erhoffen sich von der Beobachtung mit Gravitationswellen ganz neue Einblicke in bislang verborgene Bereiche des Universums. Auch bei der Suche nach den Partikeln der Dunklen Materie könnten Gravitationswellen helfen.  

BEK

Falls der Dunkle-Materie-Halo einer Galaxie aus einem Bose-Einstein-Kondensat (BEK) sehr leichter Teilchen besteht, werden durchgehende Gravitationswellen (GW), nicht aber Lichtwellen (γ) gebremst. Bild: MPIK  [Großansicht]

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die experimentelle Suche konnte bisher nur Teilchenarten bzw. Energiebereiche ausschließen; gelegentliche Erfolgsmeldungen und Vermutungen ließen sich nicht verifizieren. Es sind aber noch längst nicht alle theoretischen Vorschläge überprüft.

Einer der Vorschläge ist, dass Dunkle Materie aus sehr leichten Teilchen besteht, die im frühen Universum ein Bose-Einstein-Kondensat gebildet haben. Damit ließe sich - im Gegensatz zu anderen Vorschlägen - die Struktur des Universums auf allen Größenskalen erklären.

Ein Bose-Einstein-Kondensat ist ein Materiezustand, in dem sich alle Teilchen in demselben quantenmechanischen Zustand befinden, somit vollständig delokalisiert sind und ein einziges makroskopisches Quantenobjekt bilden. Möglich ist das nur, wenn die Teilchen sogenannte Bosonen sind. Im Labor lassen sich Bose-Einstein-Kondensate mit bestimmten Atomen bei ultratiefen Temperaturen erzeugen.

Werbung

Und wie kann man den genannten Vorschlag überprüfen? Mit Gravitationswellen! Das klingt überraschend, aber Rechnungen zeigen, dass ein solches Bose-Einstein-Kondensat die Geschwindigkeit von durchgehenden Gravitationswellen, die sich eigentlich mit Lichtgeschwindigkeit ausbreiten, verlangsamt. Ursache dafür sind die von den Gravitationswellen hervorgerufenen Verzerrungen der Raumzeit, welche das Bose-Einstein-Kondensat anregen. Das ist ähnlich wie bei Licht, das beim Durchgang durch ein dichtes Medium wie Wasser gebremst und damit gebrochen wird.

Wie stark eine Gravitationswelle gebremst wird, wenn sie durch den Dunkle-Materie-Halo einer Galaxie läuft, hängt nur von der Masse und der Wechselwirkung der Teilchen im Bose-Einstein-Kondensat sowie der Frequenz der Gravitationswelle ab: je niedriger die Frequenz, desto stärker der Effekt - auch die Lichtbrechung hängt von der Lichtfarbe ab.

Nach den Berechnungen ist die Bremswirkung bereits bei den Frequenzen stark genug für eine Messung, welche die LIGO-Detektoren, die vor etwa einem Jahr erstmals Gravitationswellen nachgewiesen haben, detektieren können. Laufende Messungen mit den Radioteleskopen des IPTA und zukünftige Satelliten-Instrumente wie eLISA können auch Gravitationswellen mit niedrigeren Frequenzen beobachten und somit den Vorschlag für Dunkle Materie umfassend überprüfen.

Intensive Gravitationswellen entstehen beim engen Umkreisen und Verschmelzen ultradichter Objekte wie Schwarzen Löchern oder Neutronensternen, aber auch bei Supernova-Explosionen. Gelingt es, solche Ereignisse, die von der Erde aus gesehen hinter einer Galaxie stattfinden, auch mit Neutrinos oder im Gammalicht zu beobachten, lässt sich anhand möglicher Zeitunterschiede, wann die Signale eintreffen, entscheiden, ob die Dunkle Materie aus einem Bose-Einstein-Kondensat sehr leichter Teilchen besteht oder nicht.

Forum
Hinweise auf Dunkle Materie durch Gravitationswellen? Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Gravitationswellen: Neuer Beobachtungslauf beginnt - 1. Dezember 2016
Gravitationswellen: Die Ära der Gravitationswellen-Astronomie - 6. Juli 2016
LIGO: Zweites Gravitationswellen-Signal entdeckt - 16. Juni 2016
LIGO: Erste direkte Beobachtung von Gravitationswellen - 11. Februar 2016
Links im WWW
Max-Planck-Institut für Kernphysik
In sozialen Netzwerken empfehlen
 
 
Werbung
Werbung
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2017. Alle Rechte vorbehalten.  W3C

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2017
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: http://www.astronews.com/news/artikel/2016/12