Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Teleskope : Artikel [ Druckansicht ]

 
VLT SURVEY TELESCOPE
Universum hat weniger Materie als gedacht 
Redaktion / idw / Pressemitteilung der Universität Bonn
astronews.com
7. Dezember 2016

Die Materie im Universum ist leichter und weniger strukturiert als bislang geglaubt. Das ergab jetzt die Untersuchung eines internationalen Forscherteams. Die Wissenschaftler hatten die Dunkle Materie im Weltraum mithilfe des schwachen Gravitationslinseneffektes kartiert. Sie nutzten dazu das VLT Survey Telescope und erfassten rund 15 Millionen Galaxien am Himmel.

Materie

Die Karte stellt die Verteilung der Materie dar: Helle Regionen besitzen die größte Massendichte, dunkle die geringste. Die unsichtbare Dunkle Materie ist in rosa wiedergegeben. Bild: Kilo-Degree Survey Collaboration/H. Hildebrandt & B. Giblin/ESO [Großansicht]

Über wie viel Masse verfügt das Universum und wie verteilt sich die Materie im Raum? Diese Grundfragen der Kosmologie sind entscheidend für die Rekonstruktion der Prozesse seit dem Urknall vor rund 13,8 Milliarden Jahren. Nach dem kosmologischen Standardmodell dehnte sich das Universum immer weiter aus, und allmählich bildeten sich Strukturen, wie zum Beispiel Galaxienhaufen. Die heutige Verteilung der Materie im Weltraum ist ein wichtiger Anhaltspunkt dafür, wie sich das Universum entwickelt hat.

Verschiedene Forscher haben mit unterschiedlichen Methoden versucht, die Dichte der Materie im Universum und deren Verteilung zu bestimmen. Einen neuen Ansatz liefert nun ein internationales Team von Wissenschaftlern aus den Niederlanden, Großbritannien, Australien, Italien, Malta und Kanada unter wesentlicher Beteiligung der Universität Bonn. Mit Hilfe des VLT Survey Telescope (VST) der europäischen Südsternwarte ESO in Chile beobachteten die Forscher rund 15 Millionen Galaxien am Himmel.

"Dabei interessierte uns, in welche Richtung die Längsachsen der Galaxien zeigen", erläutert Dr. Hendrik Hildebrandt, der am Argelander-Institut für Astronomie der Universität Bonn eine von der Deutschen Forschungsgemeinschaft geförderte Emmy Noether-Nachwuchsgruppe leitet. Bei den Millionen von Galaxien auf den aufgenommenen Bildern ist die ursprüngliche Ausrichtung im Raum im Mittel rein zufällig. Gemessene Abweichungen von dieser Zufallsverteilung sind auf den schwachen Gravitationslinseneffekt zurückführen. Dabei lenken große Massen das Licht leicht ab. "Wie bei einem Weinglas, das durch seine gebogene Form ein dahinterliegendes Bild verändert, verzerrt der Gravitationslinseneffekt das Licht, das Galaxien aussenden", erklärt Hildebrandt.

Werbung

Ein Großteil der Materie im Weltall ist nicht in Form von Sternen, Staub oder Gas sichtbar, weshalb sie Dunkle Materie genannt wird. Anhand des Gravitationslinseneffektes lässt sich aber feststellen, wo sich größere Massen in Form von sichtbarer und Dunkler Materie im Universum befinden und das Licht ablenken. Kennt man den Grad der Verzerrung in einer bestimmten Region des Universums, kann man auf die Größe der Massen zurückschließen: Kleine Gravitationslinseneffekte sind auf geringere Massen und größere Effekte auf große Massen zurückzuführen.

Diese Messungen führten die Wissenschaftler für unterschiedliche Regionen am Himmel durch und erstellten auf diese Weise eine Massenverteilungskarte, die Bereiche hoher und geringer Dichte ausweist. "Auf dem Gebiet des schwachen Gravitationslinseneffektes handelt es sich um die bisher genaueste kosmologische Untersuchung", berichtet Prof. Dr. Peter Schneider vom Argelander-Institut.

Die Ergebnisse des Forscherteams sind überraschend: Im Vergleich zu früheren Resultaten anderer Forschungsgruppen enthält das Universum nämlich weniger Materie als gedacht. "Die aktuellen Resultate zeigen, dass das kosmische Netz aus Dunkler Materie, das rund vier Fünftel der Masse im Universum ausmacht, weniger stark strukturiert ist als bislang geglaubt", sagt Dr. Massimo Viola von der Universität Leiden in den Niederlande.

Die leichte Diskrepanz zwischen den Ergebnissen anderer und der aktuellen Massenbestimmungen könnte der Auftakt für weitere wissenschaftliche Untersuchungen sein. "Unsere Studie wird helfen, das theoretische Modell von der Entwicklung seit dem Urknall zu verfeinern und unser Verständnis vom modernen Universum zu verbessern", hofft Hildebrandt.

Über ihre Untersuchungen berichten die Astronomen in einem Fachartikel, der in der Zeitschrift Monthly Notices of the Royal Astronomical Society erschienen ist.

Forum
Universum hat weniger Masse als gedacht. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Galaxienhaufen: Neue Einblicke in die Dunkle Materie - 2. Februar 2016
Galaxienhaufen: Wie dunkel ist Dunkle Materie? - 15. April 2015
Hubble & Chandra: Dunkle Materie noch dunkler als gedacht - 1. April 2015
Galaxienhaufen: Ältere Kollision zweier Galaxienhaufen entdeckt - 16. April 2012
Abell 520: Dunkle Materie gibt neue Rätsel auf - 5. März 2012
Abell 2744: Intergalaktische Unfallforschung - 22. Juni 2011
Galaxienhaufen: Kollision enttarnt erneut Dunkle Materie - 27. August 2008
Chandra: Galaxienhaufenkollision enthüllt Dunkle Materie - 22. August 2006
Links im WWW
Preprint des Fachartikels bei arXiv.org
Universität Bonn
In sozialen Netzwerken empfehlen
 
 
Werbung
Werbung
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2017. Alle Rechte vorbehalten.  W3C

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2017
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: http://www.astronews.com/news/artikel/2016/12