Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
ZEITMESSUNG
Atomuhr mit noch höherer Genauigkeit
Redaktion / idw / Pressemitteilung der Physikalisch-Technische Bundesanstalt
astronews.com
15. Februar 2016

Einer Forschergruppe der Physikalisch-Technischen Bundesanstalt (PTB) ist es gelungen, eine Atomuhr zu konstruieren, die etwa 100-mal genauer ist, als die bislang verwendeten Caesium-Atomuhren. Das Funktionsprinzip dieser Ytterbium-Uhr könnte Wissenschaftler sogar bei der Suche nach Dunkler Materie oder Hinweisen auf eine neue Physik helfen.

Hochfrequenzfalle

Die Hochfrequenzfalle der optischen Ytterbium-Einzelionen-Uhr der PTB. Bild: PTB [Großansicht]

Als erste Forschergruppe weltweit haben Atomuhren-Spezialisten der Physikalisch-Technischen Bundesanstalt (PTB) jetzt eine optische Einzelionen-Uhr gebaut, die eine bisher nur theoretisch vorhergesagte Genauigkeit erreicht. Der spätere Nobelpreisträger Hans Dehmelt hatte 1981 die grundlegenden Ideen entwickelt, wie sich mit einem in einer Hochfrequenzfalle gespeicherten Ion eine Uhr bauen lässt, die eine – damals unglaublich kleine – relative Messunsicherheit im Bereich von 10–18 erreichen kann.

Seitdem haben weltweit immer mehr Forschergruppen versucht, dies mit optischen Atomuhren – entweder auf der Basis einzelner gespeicherter Ionen oder vieler neutraler Atome – zu realisieren. Für die Einzelionen-Uhr sind die PTB-Wissenschaftler jetzt die ersten, die die Ziellinie überschritten haben. Ihre optische Ytterbium-Uhr erreichte eine relative systematische Messunsicherheit von 3 ∙ 10–18.

Die Definition und Darstellung der SI-Zeiteinheit Sekunde beruht gegenwärtig auf Cäsium-Atomuhren. Ihr "Pendel" sind Atome, die von Mikrowellenstrahlung (1010 Hz) zu Resonanz angeregt werden. Es gilt als sicher, dass eine zukünftige Neudefinition der Standardsekunde auf einer optischen Atomuhr beruhen wird. Bei ihnen ist die Anregungsfrequenz wesentlich höher (1014 bis 1015 Hz), sodass diese Uhren erheblich stabiler und genauer arbeiten können als Cäsium-Uhren.

Werbung

Die jetzt mit der Ytterbium-Uhr erreichte Genauigkeit ist ungefähr 100-fach besser als die der besten Cäsium-Uhren. Bei der Entwicklung der Uhr haben sich die PTB-Forscher einige besondere atomphysikalische Eigenschaften von Yb+ zunutze gemacht. Dieses Ion hat zwei Referenzübergänge, die für eine optische Uhr genutzt werden können. Der erste basiert auf der Anregung in den sogenannten F-Zustand, der wegen seiner extrem langen natürlichen Lebensdauer (rund sechs Jahre) eine äußerst schmale Resonanz liefert. Zusätzlich sind wegen der besonderen elektronischen Struktur des F-Zustands die Verschiebungen der Resonanzfrequenz durch elektrische und magnetische Felder außergewöhnlich klein.

Der andere Referenzübergang (zum D3/2-Zustand) zeigt größere Frequenzverschiebungen und dient deshalb als empfindlicher "Sensor" zur Optimierung und Kontrolle der Betriebsbedingungen. Vorteilhaft ist auch, dass die Wellenlängen der für die Präparation und Anregung von Yb+ benötigten Laser in einem Bereich liegen, in dem zuverlässige und relativ kostengünstige Halbleiterlaser eingesetzt werden können.

Entscheidend für den letzten Genauigkeitssprung war die Kombination von zwei Maßnahmen: Zum einen wurde für die Anregung des Referenzübergangs ein spezielles Verfahren ersonnen, in dem die vom Anregungslaser verursachte "Lichtverschiebung" der atomaren Resonanzfrequenz separat gemessen wird. Diese Information wird dann verwendet, um die Anregung des Referenzübergangs gegen die Lichtverschiebung und ihre mögliche Variation zu immunisieren.

Zum anderen wurde die von der thermischen Infrarotstrahlung der Umgebung hervorgerufene Frequenzverschiebung (die für den F-Zustand von Yb+ ohnehin relativ klein ist) mit einer Messunsicherheit von nur drei Prozent bestimmt. Hierfür wurden bei vier verschiedenen Wellenlängen im Infrarotbereich die von Laserlicht erzeugte Frequenzverschiebung und seine Intensitätsverteilung am Ort des Ions gemessen.

Eine weitere besondere Eigenschaft des F-Zustands von Yb+ ist die empfindliche Abhängigkeit der Zustandsenergie vom Wert der Feinstrukturkonstante (der elementaren Naturkonstante der elektromagnetischen Wechselwirkung) und von Anisotropie-Effekten in der Wechselwirkung zwischen Elektronen und einigen potenziellen Formen der sogenannten Dunklen Materie, die eine wichtige Rolle im gegenwärtigen kosmologischen Standardmodell spielt. Vergleiche zwischen Yb+-Uhren und mit anderen hochgenauen optischen Uhren sind derzeit wahrscheinlich der erfolgversprechendste Weg, Theorien aus diesem Bereich der "Neuen Physik" im Labor zu überprüfen.

Über ihr Ergebnisse berichten die Wissenschaftler in der Fachzeitschrift Physical Review Letters.

Forum
Atomuhr mit noch höherer Genauigkeit. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Naturkonstanten: Neue Bestätigung für Konstanz - 21. November 2014
Zeitmessung: Vier Atomuhren für die Weltzeit - 30. Dezember 2009
QUEST: Die genauste Atomuhr der Welt - 29. Mai 2009
Links im WWW
Physikalisch-Technischen Bundesanstalt (PTB)
In sozialen Netzwerken empfehlen
 
 
Werbung
Werbung
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2017. Alle Rechte vorbehalten.  W3C

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2017
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: http://www.astronews.com/news/artikel/2016/02/1602-022.shtml