Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
TEILCHENPHYSIK
Dunkle Photonen und die Dunkle Materie
Redaktion / Pressemitteilung des Helmholtz-Zentrums Dresden-Rossendorf
astronews.com
5. Mai 2014

Sie sind die Hauptbestandteile des Weltalls, doch bis heute weiß niemand, um was genau es sich bei Dunkler Materie und Dunkler Energie handelt. Bei der Suche nach einem Partikel, das die Dunkle Materie erklären könnte, sind die Physiker des HADES-Experiments nun einen Schritt weiter gekommen - allerdings indem sie nichts gefunden haben.

HADES

Mit dem HADES-Detektor an GSI in Darmstadt suchen Forscher nach der Dunklen Materie. Bild: A. Schmah/HADES [Großansicht

Die wohl größten Rätsel in der Astrophysik sind die Dunkle Energie und die Dunkle Materie. Die Dunkle Energie macht 75 Prozent des Universums und die Dunkle Materie etwa 20 Prozent aus; die uns bekannte Welt beschränkt sich damit auf lediglich rund fünf Prozent der Materie.

Ohne Dunkle Energie und Materie können weder die Ausdehnung des Universums noch dessen Dichteverteilung - und damit Strukturen wie Galaxien, Sterne, Planeten und andere kompakte Objekte – erklärt werden. Dabei weiß man von der Existenz der Dunklen Energie und Dunklen Materie nur theoretisch; einen direkten Nachweis gibt es bislang nicht.

Antworten erhofften sich Wissenschaftler durch das Aufspüren unbekannter Teilchen, die nicht in das Standardmodell der Teilchenphysik passen. "Das negative Resultat der aktuellen HADES-Experimente ist sehr wichtig, denn es zeigt, dass wir die Dunkle Materie auch in minimalen Abweichungen innerhalb des Standardmodells suchen müssen", erläutert Professor Burkhard Kämpfer, Leiter der Hadronenphysik-Gruppe am Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

Eine neue heiße Spur liefern etwa die magnetischen Momente der Myonen - das sind Elementarteilchen, die den Elektronen ähneln. "Bei hochpräzisen Experimenten wurden Hinweise auf Diskrepanzen des Standardmodelles entdeckt, womit sich die Grenzen der Physik, wie wir sie heute kennen, verschieben würden", so Kämpfer.

Werbung

Das Standardmodell führt den Aufbau der Materie auf einige wenige Bausteine zurück. Aus den Materieteilchen (Quarks, Elektronen und Neutrinos) setzen sich die Atomkerne und Atome zusammen, aus denen auch wir alle bestehen. Den Kleber, der die Welt zusammenhält, bilden die Kraft- oder Wechselwirkungsteilchen (beispielsweise die Photonen bzw. Lichtteilchen). Dazu gehört etwa auch das Higgs-Teilchen, dessen Vorhersage im Jahr 2013 mit dem Nobelpreis ausgezeichnet wurde. Nur durch die Interaktion mit dem Higgs-Boson ist erklärlich, wie einige der Teilchen zu ihrer Masse kommen. Das Standardmodell kann damit eigentlich als komplett gelten.

Als Dunkle-Materie-Teilchen scheint keiner der bekannten Kandidaten infrage zu kommen. So ist die Fahndung nach diesen Teilchen wie die berühmte Suche nach der Nadel im Heuhaufen. "Wir kennen weder die Nadel, also das Teilchen, noch den Heuhaufen, das heißt seinen Aufenthaltsort in der Unendlichkeit des Universums; vermutet wird aber eine Konzentration in Galaxien", erklärt Kämpfer. "Unsere Detektoren, die wir eigens für das riesige HADES-Spektrometer am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt entwickelt und gebaut haben, helfen bei dieser Suche. Sie können einzelne Spuren, die aus dem Zusammenprall von Teilchen herrühren, sehr genau detektieren."

Für die Physiker, die sich in der europäischen HADES-Kollaboration (High-Acceptance Di-Electron Spectrometer) zusammengeschlossen haben, galt das "Dunkle Photon" als vielversprechender Kandidat für ein Dunkle-Materie-Teilchen. Es wird auch U-Boson genannt, was mit der sogenannten "U"-Symmetrie zusammenhängt. Sie macht das Dunkle Photon einerseits zu einem Doppelgänger "normaler" Lichtteilchen, ermöglicht ihm andererseits aber auch, in eine sehr schwache Wechselwirkung mit normaler Materie zu treten.

Daher gehen die Wissenschaftler davon aus, dass das Dunkle Photon genau wie ein gewöhnliches Photon in ein Elektron-Positron-Paar zerfallen muss. Mit dem Dunklen Photon war die Nadel also vorerst theoretisch identifiziert, als Heuhaufen entpuppten sich spezifische Verteilungen von Elektron-Positron-Paaren, die bei der Kollision von Teilchen an einem großen Beschleuniger entstehen. Messsignale am HADES-Detektor im Ergebnis aktueller Experimente enttäuschten nun aber die Erwartung der Physiker. Es fand sich nicht die allerkleinste Spur eines Dunklen Photons.

Ein bewährtes Mittel zur Erzeugung von Elektron-Positron-Paaren ist es, verschiedene Teilchen zu beschleunigen und mit sehr hoher Geschwindigkeit aufeinanderprallen zu lassen. In den Experimenten kommen Strahlen aus Protonen, Deuteronen (diese setzen sich aus einem Neutron und einem Proton zusammen) oder Atomkernen zum Einsatz, die auf Ziel-Protonen oder -Kerne treffen. Tritt das seltene Ereignis ein und ein Elektron-Positron-Paar entsteht, können Wissenschaftler dies als messbares Signal detektieren, etwa mit dem Detektorsystem HADES.

Die im HZDR gebauten Detektoren für HADES bestehen aus sechs Ebenen mit einem dichten Netz aus Drähten zum Aufspüren von geladenen Teilchen. Diese Drähte besitzen eine Positionsgenauigkeit von 25 Mikrometern (ein Mikrometer entspricht einem Tausendstel Millimeter), und das bei einer Dicke, die dem Durchmesser eines menschlichen Haares entspricht. Das HADES-System hat bislang etwa zehn Milliarden analysierbare Ereignisse gesammelt.

Über ihre Ergebnisse berichten die Physiker jetzt in der Zeitschrift Physical Review B.

Forum
Dunkle Photonen und die Dunkle Materie. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Teilchenphysik: Physik-Nobelpreis für Englert und Higgs - 8. Oktober 2013
CERN: Higgs-Teilchen am LHC entdeckt? - 4. Juli 2012
CERN: Physiker kreisen Higgs-Teilchen ein - 13. Dezember 2011
Large Hadron Collider: Forscher freuen sich über erste Resultate - 3. März 2010
CERN: First Beam am Large Hadron Collider - 10. September 2008
Links im WWW
Fachartikel in Physical Review B
Helmholtz-Zentrums Dresden-Rossendorf
In sozialen Netzwerken empfehlen
 
 
Werbung
Werbung
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2017. Alle Rechte vorbehalten.  W3C

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2017
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: http://www.astronews.com/news/artikel/2014/05