Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
LABORASTROPHYSIK
Kalter Weltraum im irdischen Labor
Redaktion / idw / Pressemitteilung des Max-Planck-Instituts für Kernphysik
astronews.com
8. August 2013

Physiker haben erstmals eine neue Falle für kalte Ionen erfolgreich getestet. Sie ermöglicht den Forschern die Untersuchung von Molekülen, wie sie etwa in interstellaren Gaswolken vorkommen, unter kontrollierten Laborbedingungen. Dabei bemühten sie sich, die Bedingungen, wie sie im Weltraum herrschen, möglichst genau nachzubilden.

Coulomb-Kristall
 
Regelmäßige Anordnung von etwa zehntausend Ionen (Coulomb-Kristall) in der CryPTEx-Falle. Die einzelnen Ionen werden durch Laserfluoreszenz sichtbar. Bild: The Cryogenic Collaboration

Eine am Heidelberger Max-Planck-Institut für Kernphysik in Kooperation mit der Universität Aarhus in Dänemark entwickelte Falle für kalte Ionen wurde kürzlich erstmals erfolgreich getestet. Die Forscher demonstrierten mithilfe präziser Laserspektroskopie am Beispiel von Magnesiumhydrid-Ionen die Leistungsfähigkeit der Falle. Mit ihrer Hilfe sollen ganz neue Untersuchungen möglich werden, etwa an für die Astrophysik wichtigen Molekülionen. Über ihren Test berichten die Wissenschaftler in der Fachzeitschrift Physical Review Letters.

Moleküle, die Infrarotlicht absorbieren oder emittieren können, spielen in der Geo- und Astrophysik eine große Rolle für den Strahlungshaushalt, etwa in planetaren Atmosphären oder in interstellaren Wolken. Bekannt und bedeutend ist beispielsweise der Treibhauseffekt in der Erdatmosphäre, verursacht durch den geringen Anteil an mehratomigen bzw. polaren Spurengasen wie Wasser, Kohlendioxid oder Methan, während die symmetrischen zweiatomigen Stickstoff- und Sauerstoffmoleküle für Infrarotstrahlung praktisch transparent sind.

Die Stabilität interstellarer Molekülwolken gegenüber einem Gravitationskollaps ist essentiell für die Frage der Entstehung von Sternen und Planetensystemen. Einen wichtigen Kühlmechanismus stellt die Infrarotstrahlung aus Molekülen dar. Spektroskopie dieser Strahlung wiederum erlaubt die Identifizierung der Moleküle und ihrer Häufigkeit. Von Interesse sind dabei Metallhydride, also zweiatomige, unsymmetrische und somit infrarotaktive Moleküle und ihre Ionen.

Werbung

Zum besseren Verständnis der beobachteten Spektren ist die Astrophysik auf Laborexperimente angewiesen. Diese wiederum müssen die Bedingungen, wie sie im Weltraum herrschen, also niedrige Dichte und Temperatur, möglichst gut und kontrolliert nachbilden. Physiker der Gruppe um José Crespo am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) und der Ionenfallengruppe von Michael Drewsen an der Universität Aarhus haben hierfür erfolgreich eine neue Methode angewandt.

Hierzu präparierten sie kalte Magnesiumhydrid-Ionen (MgH+) in der am MPIK gebauten Ionenfalle CryPTEx, die eine Temperatur von 4 Kelvin erreicht und exzellente Vakuumbedingungen von weniger als 10–15 mbar liefert. In CryPTEx lassen sich Ionen bis zu 30 Stunden speichern. Bei dem Experiment an der Universität Aarhus haben die Wissenschaftler mit einer von der Aarhuser Gruppe entwickelten Methode Magnesiumhydrid-Ionen präpariert: Zunächst werden Magnesiumionen in der Falle gefangen und mit Laserstrahlen gekühlt. Anschließend reagieren diese mit einem injizierten Wasserstoffstrahl zu MgH+.

In der Falle bilden typischerweise einige Tausend kalte Ionen einen so genannten Coulomb-Kristall mit regelmäßiger Struktur. Die Forscher untersuchten, wie schnell ein Zustand von MgH+, bei dem je ein Schwingungs- und Rotationsquant angeregt ist (1,1), in den Grundzustand (0,0) zurückfällt. "Diesen Zustand erreichen wir durch gezielte Laser-Anregung von Molekülionen im Schwingungsgrundzustand, in denen zwei Rotationsquanten angeregt sind (0,2)", erklärt Michael Drewsen.

Diese Rotation geschieht durch Stöße mit dem Restgas oder durch die schwache restliche Infrarotstrahlung in der Falle. Im Vergleich der Abnahme der Besetzung des Zustands (0,2) für verschiedene Einwirkdauern des Lasers ergibt sich die gesuchte Lebensdauer von (1,1) zu 0,16 Sekunden - in sehr guter Übereinstimmung mit dem theoretischen Wert. Zudem lässt sich verfolgen, wie schnell sich nach Entvölkerung von (0,2) durch lange Einwirkung des Lasers dieser Zustand durch die "Heizrate" aus der Umgebung (wie beispielsweise Stöße oder Infrarotstrahlung) wieder besetzt. Dies geschieht erst nach etwa 20 Sekunden, was deutlich langsamer als die gesuchte Lebensdauer ist. Dies ist zugleich die Voraussetzung, diese messen zu können und demonstriert die Leistungsfähigkeit der Falle.

"Das Magnesiumhydrid-Ion ist gleichsam ein genauer Nano-Sensor, der uns verrät, wie kalt es in der Falle unter den Bedingungen des Experiments wirklich ist", erläutert Oscar Versolato vom  MPIK. Bei den Messungen in Aarhus ergab sich eine Temperatur von 35 Kelvin. Begrenzende Faktoren waren restlicher Wasserstoff aus der Präparation des MgH+ sowie Infrarotlicht aus den notwendigen Öffnungen für die Laserstrahlen.

Die CryPTEx-Falle ist mit der vorgestellten neuen Messmethode ein Prototyp für zukünftige fundamentale Tests an kalten Ionen. Für die Astrophysik ermöglichen die Labormessungen im Vergleich mit Beobachtungen aus dem Weltall eine Identifizierung der Moleküle und ihrer Häufigkeit. Im Blick auf Anwendungen könnten sich hochgeladene Ionen als neuer Zeitstandard eignen. Hierzu besteht eine Kooperation mit der Physikalisch-Technischen Bundesanstalt. Am MPIK ist derzeit eine neue Anlage mit einer CryPTEx-Falle zur Speicherung hochgeladener Ionen im Aufbau.

Forum
Kalter Weltraum im irdischen Labor. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Physik: Gas der Sonnenkorona im Labor untersucht - 3. Mai 2007
Links im WWW
Preprint des Fachartikels bei arXiv.org
Max-Planck-Institut für Kernphysik
In sozialen Netzwerken empfehlen
 
 
Werbung
Werbung
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2017. Alle Rechte vorbehalten.  W3C

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2017
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: http://www.astronews.com/news/artikel/2013/08