Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
EINSTEIN@HOME
Pulsarfund als Test für Relativitätstheorie?
Redaktion / Pressemitteilung des Max-Planck-Instituts für Gravitationsphysik
astronews.com
7. April 2011

Anfang März gaben Wissenschaftler des Projekts Einstein@Home die Entdeckung eines neuen Pulsars bekannt. Der Fund könnte sich als regelrechter Glücksfall erweisen, da der Pulsar einen Begleiter besitzt, der fast die Masse unserer Sonne hat. Beide Objekte umrunden einander auf einer nahezu perfekten Kreisbahn. Das System könnte sich damit zum Test von Einsteins Relativitätstheorie eignen.

J1952+2630

Schematische Darstellung des Systems J1952+2630. Die Bahnen sind kreisförmig und erscheinen nur durch die Perspektive elliptisch. Im Hintergrund der Bildschirmschoner von Einstein@Home. Bild: AEI

Neutronensterne sind Exoten. Sie bestehen aus Materie, die viel dichter gepackt ist als gewöhnlich und rotieren mit hohem Tempo um die eigene Achse. Dabei senden sie Strahlung aus und werden häufig als Pulsare im Radiowellenbereich sichtbar. Forscher des Max-Planck-Instituts für Gravitationsphysik in Hannover haben im Rahmen der internationalen PALFA-Kollaboration und dank engagierter Teilnehmer am Projekt Einstein@Home nun einen Pulsar entdeckt, der gemeinsam mit einem Weißen Zwerg – einer ausgebrannten Sonne – einen perfekten Kreistanz aufführt (astronews.com berichtete). Anhand des sogenannten Shapiro-Effekts wollen die Forscher das Paar nun "wiegen".

Um knifflige Fragestellungen der Allgemeinen Relativitätstheorie zu beantworten, bleibt den Wissenschaftlern meist nur der Blick tief ins All. Und selbst dort sind die geeigneten astrophysikalischen Objekte aus dem Datenwust oft nur mit großer Mühe herauszufiltern. Deshalb lassen sich die Wissenschaftler bei der zeitaufwendigen Datenanalyse von Freiwilligen helfen, die für Projekte wie Einstein@Home ungenutzte Rechenleistung ihrer Heim- oder Bürocomputer zur Verfügung stellen.

Mit dieser Unterstützung fand die Arbeitsgruppe von Bruce Allen, Direktor am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut, AEI) in Hannover, gemeinsam mit Kollegen der PALFA-Kollaboration den Radiopulsar J1952+2630. Die Forscher wurden in den Daten des Arecibo-Teleskops fündig. "Ich bin sehr begeistert, dass das Einstein@Home-Team einen weiteren exotischen Radiopulsar aufgespürt hat. Diese erstaunlichen Objekte sind wirklich extrem, auf ein Drittel ihrer Größe zusammengedrückt, würden sie zu einem Schwarzen Loch kollabieren", sagt Allen. "Ein großes Dankeschön geht an die Tausenden Freiwilligen, ohne die wir die Entdeckung nicht gemacht hätten."

Werbung

J1952+2630 blitzt alle 20,7 Millisekunden einmal auf und befindet sich in einer Entfernung von rund 31.000 Lichtjahren von der Erde. Aus der Modulation der Radiopulse schlossen die Astronomen, dass der Pulsar einen Partnerstern mit einer Mindestmasse von 95 Prozent der Sonnenmasse besitzt. Der Tanz beider Himmelskörper einmal um den gemeinsamen Schwerpunkt dauert 9,4 Stunden und ist nahezu perfekt kreisförmig.

Aus dieser Bahnform ziehen die Astrophysiker wichtige Schlüsse über Natur und Entwicklungsgeschichte des Begleiters, den sie gar nicht direkt sehen können: Er ist wahrscheinlich ein (verhältnismäßig massereicher) Weißer Zwerg – ein ausgebrannter Stern, der einmal ein recht gewöhnliches Dasein geführt hat, so wie unsere Sonne auch. Am Ende seines Lebens blähte er sich zu einem Roten Riesen auf und stieß die äußere Materieschicht ab. Einen Teil dieser Materie saugte dann der Neutronenstern auf.

Die beiden Sterne tauschten auch (Bahn-)Drehimpuls aus, wobei sich ihre Umlaufbahnen in perfekte Kreise verwandelten. Hätte der Stern früher deutlich mehr Masse als die Sonne besessen, dann hätte er sich am Ende seines Lebens bei einer Supernova-Explosion ebenfalls in einen Neutronenstern verwandelt. Und durch den dabei entstehenden Impuls wäre er asymmetrisch in eine elliptische Bahn gekickt worden.

Die Kombination aus einem Neutronenstern und einem recht massereichen Weißen Zwerg bei kreisrunder Umlaufbahn ist selten; gewöhnlich haben Weiße Zwerge bei solchen Bahnorbits lediglich 0,1 bis 0,3 Sonnenmassen. Und gerade einmal ein halbes Dutzend der rund hundert bekannten Zweifachsternsysteme mit Pulsar weisen diese Eigenschaften auf. Bisher kennen die Astronomen 1.900 Pulsare, Einzelgänger eingeschlossen.

"Dank der relativ hohen Masse des Begleiters eignet sich dieses Doppelsternsystem vermutlich zum Testen eines allgemeinrelativistischen Phänomens, nämlich dem der Laufzeitverzögerung von Licht", sagt Bruce Allens Doktorand Benjamin Knispel. "Damit könnten wir auch die Massen der beiden Komponenten exakt bestimmen."

Dieser auch als Shapiro-Verzögerung bezeichnete Effekt entsteht, wenn sichtbares Licht oder Radiowellen auf dem Weg durchs All ein Gravitationsfeld, etwa das eines Sterns, passiert. Das Schwerefeld lenkt die Strahlen von der geraden Bahn ab. Für diesen Umweg braucht das Licht aber etwas mehr Zeit. Während sich nun ein Weißer Zwerg in die Sichtlinie zwischen Pulsar und Erde schiebt, müssen die regelmäßig vom Neutronenstern ausgesandten Radiopulse eine immer weitere Strecke zurücklegen.

Auf diese Weise treffen die Pulse nacheinander in jeweils größerem zeitlichem Abstand beim Beobachter ein. "Um dies zu messen, müssen wir möglichst von der Seite auf das System blicken, also auf die Kante der Bahnebene, sodass der Radiopuls des Neutronensterns bei bestimmten räumlichen Konstellationen das Schwerefeld des Weißen Zwergs auf dem Weg zu uns durchläuft", sagt Knispel. Mit dieser Methode ließen sich die beiden Sterne wiegen. Hierzu plant Benjamin Knispel schon zusammen mit seinen Kollegen die nächsten Beobachtungen.

Forum
Pulsarfund als Test für Relativitätstheorie? Diskutieren Sie mit anderen Lesern im astronews.com Forum.
siehe auch
Einstein@Home: Neuer Pulsarfund in Arecibo-Daten - 3. März 2011
Einstein@Home: Pulsarfund am heimischen Computer - 13. August 2010
Einstein@home: Millionen PCs sollen nach Gravitationswellen suchen - 4. Februar 2005
Links im WWW
Max-Planck-Institut für Gravitationsphysik
Einstein@Home
Preprint des Fachartikels bei arXiv.org
In sozialen Netzwerken empfehlen
 
Werbung
Werbung
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2017. Alle Rechte vorbehalten.  W3C

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2017
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: http://www.astronews.com/news/artikel/2011/04