Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [ Druckansicht ]

 
SUPERCOMPUTER
Physiker berechnen Nukleonenmasse
Redaktion / Pressemitteilung des Forschungszentrums Jülich
astronews.com
8. Dezember 2008

Einem Forscherteam ist es erstmalig gelungen, die Masse der wichtigsten Bausteine der Materie auf theoretischem Weg zu berechnen. Das wichtigste Hilfsmittel der Physiker war dabei der Supercomputer JUGENE am Forschungszentrum Jülich. Die umfangreichen Simulationen der Wissenschaftler bestätigen die Richtigkeit einer grundlegenden physikalischen Theorie, der Quantenchromodynamik.

FZ Jülich

Supercomputer helfen, die Prozesse in Atomkernen und deren Masse zu verstehen. Die Kräfte zwischen drei Quarks im Nukleon, erklären den sichtbaren Anteil der Masse im Universum. Bild: Forschungszentrum Jülich / NASA, ESA und AURA/Caltech

Materie ist aus Atomen aufgebaut, Atome wiederum bestehen aus einem Kern aus Protonen und Neutronen, um den Elektronen kreisen. "Mehr als 99,9 Prozent der Masse der sichtbaren Materie stammt von den Protonen und Neutronen", erläutert der gegenwärtig an der Bergischen Universität Wuppertal tätige ungarische Physiker Zoltan Fodor, der das Forschungsprojekt am Jülicher Supercomputer JUGENE geleitet hat.

Diese Teilchen, von den Physikern unter dem Begriff "Nukleonen" zusammengefasst, sind aus jeweils drei Quarks aufgebaut. Die Masse der drei Quarks ergibt zusammengerechnet jedoch nur etwa fünf Prozent der Masse eines Kernbausteins - woher also haben die Nukleonen ihre Masse? Die Antwort auf diese Frage findet sich in der berühmten Formel E=mc2 von Albert Einstein: Energie und Masse sind zueinander äquivalent, und 95 Prozent der Nukleonenmasse haben ihren Ursprung in der Bewegungsenergie der Quarks und zwischen ihnen ausgetauschter Teilchen.

Die drei Quarks eines Nukleons sind durch die starke Wechselwirkung aneinander gebunden, eine Kraft, die zwar nur im Bereich der Elementarteilchen von Bedeutung ist, die dafür aber - ihr Name sagt es - sehr stark ist. Die Physiker haben seit langem eine theoretische Beschreibung dieser Wechselwirkung, die Quantenchromodynamik. "Im Prinzip sollte es möglich sein, aus der Quantenchromodynamik die Masse der Nukleonen zu berechnen", so Fodor.

Solche Berechnungen sind jedoch ungeheuer kompliziert. So wie die elektromagnetischen Kräfte durch Photonen - Lichtteilchen - vermittelt werden, gibt es auch bei der starken Wechselwirkung Trägerteilchen, die sogenannten Gluonen. Doch diese Gluonen können sich - im Gegensatz zu Photonen - auch gegenseitig anziehen. Diese Selbstwechselwirkung führt einerseits dazu, dass Quarks sich so stark anziehen, dass sie niemals alleine auftreten, sondern immer zu zweit oder zu dritt größere Teilchen bilden. Und anderseits macht die Selbstwechselwirkung die Berechnung der Masse dieser Teilchen so komplex, dass sie bislang die Möglichkeiten der Forscher überstieg.

Dank des Supercomputers JUGENE am Forschungszentrum Jülich konnten Fodor und seine Kollegen nun diese Hürde überwinden, erstmals die starke Wechselwirkung auch für größere Quarkabstände richtig beschreiben und so die Massen von Protonen, Nukleonen und anderen aus Quarks aufgebauten Teilchen berechnen. 180 Billionen Rechenoperationen kann JUGENE in jeder Sekunde durchführen, damit ist er der schnellste Computer Europas.

Für ihre Berechnungen haben Fodor und seine Kollegen Raum und Zeit in ein engmaschiges vierdimensionales Gitter zerlegt und die komplizierten Gleichungen der Quantenchromdynamik jeweils auf den Punkten dieses Gitters gelöst. Dann haben die Forscher den Abstand der Gitterpunkte schrittweise immer kleiner gemacht, um sich so immer weiter an die Wirklichkeit, die kontinuierliche Raumzeit, anzunähern. "Es handelt sich um eine der rechenintensivsten Arbeiten in der Geschichte der Menschheit", so Fodor.

Als Ergebnis erhielten die Wissenschaftler schließlich Werte für die Massen der Nukleonen, die genau mit den in Experimenten gemessenen Werten übereinstimmen. "Damit haben wir gezeigt, dass die Quantenchromodynamik tatsächlich eine korrekte Beschreibung der starken Wechselwirkung ist", freut sich Fodor. "Der Ursprung des überwiegenden Teils der Masse der sichtbaren Materie ist dadurch also geklärt", erklärt der Forscher weiter.

Doch damit sind nicht alle Rätsel gelöst. Denn die sichtbare Materie macht nur einen kleinen Teil der Gesamtmasse des Universums aus - etwa 80 Prozent dieser Masse ist dunkel und besteht aus bislang unbekannten Elementarteilchen. "Woher diese Dunkle Materie ihre Masse hat, dafür haben wir bislang keine Erklärung." Die Wissenschaftler berichteten über ihre Resultate Ende November in der Fachzeitschrift Science.

Forum
Physiker berechnen Nukleonenmasse. Diskutieren Sie mit anderen Lesern im astronews.com Forum.
Links im WWW
Forschungszentrum Jülich
In sozialen Netzwerken empfehlen
 
Werbung
Werbung
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2017. Alle Rechte vorbehalten.  W3C

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2017
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: http://www.astronews.com/news/artikel/2008/12