Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel [Druckansicht]

 
PULSARE
Neues von alten Pulsaren
Redaktion / MPG
astronews.com
27. Juli 2006

Pulsare, also rotierende Neutronensterne, gleichen kosmischen Leuchtfeuern, die über komplexe Prozesse elektromagnetische Strahlung erzeugen. Darüber, wie sie eigentlich genau funktionieren, rätseln Astronomen seit der Entdeckung dieser Objekte vor fast 40 Jahren. Dank der hohen Empfindlichkeit des europäischen Röntgenobservatoriums XMM-Newton könnten Forscher nun zumindest eine Teilantwort gefunden haben.

Pulsar

Künstlerische Darstellung der im Röntgenlicht leuchtenden Magnetosphäre eines Millionen Jahre alten Pulsars. Der Neutronenstern selbst ist unsichtbar, da seine Oberfläche nicht mehr genügend Hitze besitzt, um Röntgenstrahlung zu emittieren. Oberhalb der beiden magnetischen Pole werden elektrisch geladene Teilchen aus der Magnetosphäre nach außen beschleunigt - und senden dabei intensive, stark gerichtete Strahlung aus, die sich mit XMM-Newton beobachten lässt. Bild: Werner Becker / MPI für extraterrestrische Physik

Neutronensterne entstehen mit Temperaturen von Billionen Grad während des Gravitationskollapses massereicher Sterne, die ihren nuklearen Brennstoffvorrat verbraucht haben und unter ihrer eigenen Last in sich zusammenstürzen. Nach dieser spektakulären Geburt kühlen die heißen Sternleichen stetig ab. Das geschieht während der ersten 100.000 Jahre im Wesentlichen durch die Emission von Neutrinos, die den Neutronenstern ungehindert verlassen und dabei Energie mitnehmen. Später überwiegt die Abkühlung durch Abstrahlung thermischer Photonen von der heißen Sternoberfläche.

Beobachtungen mit früheren Röntgensatelliten haben gezeigt, dass die Röntgenstrahlung der Neutronensterne aus drei verschiedenen Gebieten stammt: Zum einen glüht die gesamte, Millionen Grad heiße Oberfläche; zweitens strahlen elektrisch geladene Teilchen bei ihrer Bewegung entlang gekrümmter Magnetfeldlinien beim Verlassen der Magnetosphäre sehr intensiv; zum Dritten emittieren junge Pulsare häufig Röntgenstrahlung, die ihren Millionen Grad heißen Polkappen entspringt.

Bisher haben die Astronomen angenommen, dass diese heißen Flecken ausschließlich durch ein Bombardement hochenergetischer, geladener Teilchen entstehen, die aus der Magnetosphäre zur Oberfläche zurückfliegen und die Polkappenbereiche aufheizen. Beobachtungen mit XMM-Newton lassen an diesem Bild jedoch Zweifel aufkommen. So erlaubte der Satellit erstmals detaillierte Untersuchungen an bisher fünf, jeweils mehrere Millionen Jahre alten Pulsaren. "Kein anderes im Orbit befindliches Röntgenobservatorium besitzt zurzeit die dafür notwendige Empfindlichkeit", sagt Werner Becker, Mitarbeiter am Max-Planck-Institut für extraterrestrische Physik in Garching und Privatdozent an der Universität München.

Becker und seine Kollegen, unter anderem Axel Jessner vom Max-Planck Institut für Radioastronomie in Bonn, fanden jetzt bei den Millionen Jahre alten Pulsaren weder einen Hinweis auf Röntgenstrahlung von der gesamten Neutronensternoberfläche, noch auf heiße Polkappen - obwohl die Forscher intensive Röntgenstrahlung von geladenen Teilchen aus der Magnetosphäre registrierten.

Werbung

Das Fehlen der Röntgenstrahlung von der gesamten Sternoberfläche überraschte die Wissenschaftler nicht: In den vielen Millionen Jahren seit der Entstehung dieser Neutronensterne sind diese bereits so weit abgekühlt, dass ihre Temperatur weit unterhalb von 500.000 Grad Celsius liegt und sich ihr Glühen daher nicht mehr im Röntgenbereich beobachten lässt. Zum Erstaunen der Forscher gaben aber auch die heißen Polkappen keine Röntgenstrahlung ab. Das zeigt, dass die Heizung der Polkappen durch hochenergetische Teilchen bei alten Pulsaren nicht mehr effizient genug funktioniert. "Im Fall des drei Millionen Jahre alten Pulsars mit der Katalogbezeichnung PSR B1929+10, des Prototyps eines alten Pulsars, ist jegliche thermische Komponente in der beobachteten Röntgenstrahlung kleiner als sieben Prozent", sagt Becker.

Wie sich nun zeigt, ist die konventionelle Sichtweise für die Entstehung der heißen Flecken bei jüngeren Pulsaren nicht die einzig mögliche. Eine alternative Interpretation lautet, dass die im Neutronenstern gespeicherte Wärmeenergie durch das starke Magnetfeld zu den Polen geleitet wird, die dadurch Temperaturen von Millionen Grad besitzen. Das ist möglich, weil die Wärmeleitung in Neutronensternen durch Elektronen geschieht. Da diese eine elektrische Ladung tragen, ist ihre Bewegungsrichtung durch die Richtung des Magnetfelds vorgegeben.

Entsprechend könnten die Millionen Grad heißen Flecken bei jüngeren Pulsaren im Wesentlichen durch die Hitze aus dem Innern des Neutronensterns entstehen, und nicht nur durch das Bombardement der zur Oberfläche zurückfliegenden hochenergetischen Teilchen. Die heißen Flecken verschwinden dann mit dem Abkühlen der Neutronensterne und sind entsprechend bei den Millionen Jahre alten Pulsaren nicht mehr zu beobachten. "Die Gültigkeit dieser Sichtweise wird zurzeit in der Fachwelt noch diskutiert, jedoch legen die neuen, mit XMM-Newton durchgeführten Beobachtungen eine solche Interpretation sehr nahe", sagt Werner Becker.

Die Pulsare wurden im Jahr 1967 von den beiden Astronomen Jocelyn Bell-Burnell und Anthony Hewish an der englischen Universität Cambridge entdeckt. Hinter diesen Objekten verbergen sich so genannte Neutronensterne: schnell rotierende und stark magnetisierte Überreste kollabierter massereicher Sterne, die am Ende ihres Lebens in einer Supernova-Explosion zugrunde gehen. Dabei erreichen die Sternleichen eine so hohe Dichte - 1,4 Sonnenmassen konzentrieren sich in einem Raumbereich von nur etwa 20 Kilometern Durchmesser -, dass Elektronen in die Atomkerne dringen und dort zur Entstehung von Neutronen führen. In Neutronensternen und deren Magnetosphären spielen sich sehr komplexe und bis heute nur im Ansatz verstandene Prozesse ab.

Forum
Pulsare - Leuchtfeuer im All.  Diskutieren Sie mit anderen Lesern im astronews.com Forum.
Links im WWW
Max-Planck-Institut für extraterrestrische Physik
 
Werbung
Werbung
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2017. Alle Rechte vorbehalten.  W3C

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2017
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: http://www.astronews.com/news/artikel/2006/07