Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Teleskope : Artikel  [Druckansicht]

 
WEISSE ZWERGE
Der Stern, der vor 100 Jahren starb
Redaktion
astronews.com
29. Juni 2004

Ein internationales Astronomenteam hat unter Leitung von Wissenschaftlern der Universität Tübingen einen Stern aufgespürt, dessen nuklearer Fusionsreaktor erst vor rund 100 Jahren erloschen ist.  Die Oberfläche dieses Weißen Zwergs besteht aus Kohlenstoff und Sauerstoff und ist rund 200.000 Grad heiß.

H1504+65

Künstlerische Darstellung des jungen, sehr heißen weißen Zwergs H1504+65, betrachtet aus einer Entfernung ähnlich derjenigen der Erde zur Sonne. Bild: Universität Tübingen

Ein internationales Team von Astronomen, die die Überreste von Sternen wie unserer eigenen Sonne untersuchen, hat unter Leitung von Tübinger Astronomen ein bemerkenswertes Objekt gefunden, bei dem der Kernreaktor, der es ehemals mit Energie versorgt hat, sich erst vor kurzer Zeit abschaltete. Dieser Stern, der heißeste bekannte weiße Zwerg, H1504+65, hat während seines Todeskampfes offensichtlich seine gesamten äußeren Schichten verloren und hinterlässt nur noch seinen nackten, innersten Kern, der früher sein Kraftwerk darstellte.

Wissenschaftler aus Deutschland, Großbritannien und den USA haben zwei Weltraumteleskope der NASA, das Chandra Röntgenteleskop und das FUSE-Teleskop (Far Ultraviolet Spectroscopic Explorer), auf H1504+65 gerichtet, um seine Zusammensetzung zu bestimmen und seine Temperatur zu messen. Die Daten enthüllten, dass die Sternoberfläche extrem heiß ist, 200.000 Grad, und praktisch keinerlei Wasserstoff und Helium aufweist; so etwas ist bisher noch nie beobachtet worden. Stattdessen besteht die Oberfläche hauptsächlich aus Kohlenstoff und Sauerstoff, der "Asche der Fusion von Helium in einem Kernreaktor. Eine wichtige Frage ist: Warum hat dieser einzigartige Stern seinen Wasserstoff und sein Helium, die normalerweise das Sterninnere vor unserem Blick verbergen, verloren?

Prof. Klaus Werner von der Universität Tübingen erklärt dazu: "Wir haben erkannt, dass dieser Stern, auf astronomischer Zeitskala, erst vor kurzem seine Kernfusion eingestellt hat - vor etwa einhundert Jahren. Wir sehen ganz eindeutig den freigelegten, heute verloschenen Reaktor, der den früher sehr hellen Riesenstern mit Energie versorgte." Und Prof. Martin Barstow  von der University of Leicester ergänzt: "Die Erforschung der Natur der nuklearen Asche toter Sterne gibt uns wichtige Hinweise auf das Leben von Sternen wie der Sonne und wie sie schließlich sterben. Der nukleare Abfall, der dabei produziert wird, besteht aus wesentlichen Elementen des Lebens, Kohlenstoff und Sauerstoff, die von den Sternen schließlich in den interstellaren Raum zurückgegeben werden, um neue Sterne, Planeten und vielleicht lebende Wesen zu bilden."

Werbung

"Astronomen haben schon lange vorhergesagt, dass viele Sterne am Ende ihres Lebens Kohlenstoff-Sauerstoff-Kerne im Inneren ausbilden, aber ich habe nie erwartet, dass wir so etwas wirklich einmal sehen könnten. Dies ist eine großartige Möglichkeit, unser Verständnis über den Lebenszyklus von Sternen zu verbessern," so Dr. Jeffrey Kruk von der amerikanischen Johns Hopkins University.

Die Chandra-Daten lassen auch Spuren von Neon erkennen, einem erwarteten Nebenprodukt der Heliumfusion. Eine große Überraschung jedoch war die Anwesenheit von Magnesium in ähnlich hoher Häufigkeit. Dieses Ergebnis könnte der Schlüssel für die einzigartige Zusammensetzung von H1504+65 sein und theoretische Vorhersagen beweisen, dass einige Sterne, wenn sie massereich genug sind, ihr Leben verlängern können, indem sie eine weitere Energiequelle anzapfen: die Fusion von Kohlenstoff zu Magnesium. Da Magnesium allerdings auch bei der Heliumfusion erzeugt werden kann, ist der Beweis dieser Theorie noch nicht wasserdicht.

Das noch fehlende Teil in diesem Puzzle wäre die Entdeckung von Natrium, das den Einsatz eines weiteren Observatoriums erfordert: dem Hubble-Weltraumteleskop. Das Forscherteam hat bereits Beobachtungszeit an Hubble für das kommende Jahr zugesagt bekommen, und wird dann hoffentlich die endgültige Antwort über den Ursprung dieses einzigartigen Sterns geben können.

Links im WWW
Chandra, Seite an der Harvard Universität
Chandra, Seite der NASA
In sozialen Netzwerken empfehlen
 
Werbung
Werbung
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2017. Alle Rechte vorbehalten.  W3C

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2017
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: http://www.astronews.com/news/artikel/2004/06