Anzeige
 Home  |  Nachrichten  | Frag astronews.com  | Bild des Tages  |  Kalender  | Glossar  |  Links  | Forum  | Über uns    
astronews.com  
Nachrichten

astronews.com
astronews.com

Der deutschsprachige Onlinedienst für Astronomie, Astrophysik und Raumfahrt

Home  : Nachrichten : Forschung : Artikel  [Druckansicht]

 
TEILCHENPHYSIK
Forscher kommen Ursuppe näher
Redaktion
astronews.com
16. Juli 2003

Unmittelbar nach dem Urknall bestand das Universum aus einem heißen Plasma aus Quarks und Gluonen.  Im Schwerionen-Beschleuniger der amerikanischen Brookhaven National Laboratories gelang es Forschern jetzt, einen neuen Materie-Zustand zu erzeugen, der dieser Ursuppe recht nahe kommt. Beteiligt an den Forschungen waren auch deutsche Kernphysiker der Universität Münster.

Brookhaven National Laboratory

Luftaufnahme des Brookhaven National Laboratory. Foto: Brookhaven National Laboratory

Nur einen Sekundenbruchteil nach dem Urknall soll sie Bestand gehabt haben, die heiße und dichte Ursuppe aus Quarks und Gluonen, aus der sich vor vielen Milliarden Jahren das Universum entwickelt hat. Diesen Urzustand zu rekonstruieren, in dem sich die heute fest im Atomkern eingeschlossenen winzigsten Grundbausteine der Materie nur für diesen extrem kurzen und doch so entscheidenden Moment frei bewegten, ist seit jeher das Ziel von Kernphysikern überall auf der Welt. Wie es aussieht, sind sie diesem Ziel jetzt näher denn je. Einem internationalen Forscherteam, bei dem auch Kernphysiker der Universität Münster maßgeblich mitgewirkt haben, ist es in Experimenten am Schwerionen-Beschleuniger der Brookhaven National Laboratories in den USA gelungen, einen neuen Materie-Zustand zu erzeugen. Ob damit tatsächlich bereits das so genannte Quark-Gluon-Plasma erzeugt werden konnte, wagen Experten zwar noch nicht eindeutig zu behaupten. Gleichwohl werden die jüngsten Ergebnisse als das bislang wichtigste Indiz für den gesuchten Urzustand der Materie gewertet.

Wie Prof. Dr. Rainer Santo, Direktor des Instituts für Kernphysik der Universität Münster, erläutert, wurden bei den Experimenten an dem neuen Relativistic Heavy Ion Collider (RHIC) in den USA, der als der bislang leistungsstärkste Schwerionen-Beschleuniger der Welt gilt, Gold-Atomkerne mit hoher Energie frontal aufeinander geschossen. Durch die enorme Energie, mit der die Kerne aufeinander prallten, kam es für einen kurzen Moment zu einer extrem hohen Dichte der Zerfallsteilchen und zu Temperaturen von über einer Billion Grad Celsius. Dadurch wiederum wurden die Quarks für diese wenigen Mikrosekunden gleichsam aus den Kernbestandteilen Neutronen und Protonen, in denen sie normalerweise fest eingeschlossen sind, herausgelöst und bildeten für kurze Augenblicke eine "Quarksuppe".

Anzeige

Um herauszufinden, was bei der Kollision der Atomkerne tatsächlich passiert ist und ob in diesem Sekundenbruchteil tatsächlich ein Quark-Gluon-Plasma existiert hat, haben die Wissenschaftler zahlreiche Messungen von Teilchen durchgeführt, die nach der Abkühlung zurückblieben. Das münstersche Team um Prof. Santo und Dr. Klaus Reygers war dabei maßgeblich an der Messung so genannter neutraler Pionen beteiligt. Aufgrund ihrer geringen Masse werden diese Teilchen besonders häufig produziert. Ein Vergleich der Produktion der Pionen bei unterschiedlichen Kernkollisionen fällt laut Santo genau so aus, wie man es erwarten würde, wenn tatsächlich ein Quark-Gluon-Plasma erzeugt worden wäre.

Noch nie waren die Wissenschaftler damit so nah daran, den Urzustand der Materie zu schaffen, aus der das gesamte Universum entstanden ist. Nach spektakulären Ergebnissen vor drei Jahren am Europäischen Kernforschungszentrum CERN in Genf, zu denen die Kernphysiker in Münster ebenfalls maßgeblich beigetragen haben, sind sie ihrem Ziel und damit der Erfüllung eines langen Menschheitstraums nach einer Erklärung der Ursprünge des Universums so nahe gerückt wie bislang noch nie. Was unmittelbar nach dem "Big Bang" geschah, kann somit heute mit Hilfe des " Urknalls im Labor" schon ziemlich genau erklärt werden.

siehe auch
Teilchenphysik: Überraschung beim Mini-Urknall - 13. November 2002
Teilchenphysik: Überraschung mit Gold-Ionen - 7. Mai 2001
Teilchenphysik: Ein Fehler im Standardmodell - 12. Februar 2001
Links im WWW
Brookhaven National Laboratory
In sozialen Netzwerken empfehlen
 
Anzeige
astronews.com 
Nachrichten Forschung | Raumfahrt | Sonnensystem | Teleskope | Amateurastronomie
Übersicht | Alle Schlagzeilen des Monats | Missionen | Archiv
Weitere Angebote Frag astronews.com | Forum | Bild des Tages | Newsletter
Kalender Sternenhimmel | Startrampe | Fernsehsendungen | Veranstaltungen
Nachschlagen AstroGlossar | AstroLinks
Info RSS-Feeds | Soziale Netzwerke | astronews.com ist mir was wert | Werbung | Kontakt | Suche
Impressum | Nutzungsbedingungen | Datenschutzerklärung | Cookie-Einstellungen
     ^ Copyright Stefan Deiters und/oder Lieferanten 1999-2023. Alle Rechte vorbehalten.  W3C
Diese Website wird auf einem Server in der EU gehostet.

© astronews.com / Stefan Deiters und/oder Lieferanten 1999 - 2020
Alle Rechte vorbehalten. Vervielfältigung nur mit Genehmigung.


URL dieser Seite: https://www.astronews.com:443/news/artikel/2003/07